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Анотація. У статті розглянуто концепцію лінивих обчислень та її застосування для 
ефективної обробки великих обсягів даних. Проаналізовано основні принципи лінивих 
обчислень, їх реалізацію в різних мовах програмування та стратегії ефективного 
використання в контексті обробки Big Data. Досліджено переваги та обмеження лінивого 
підходу, зокрема щодо економії пам'яті, підвищення продуктивності та можливості роботи 
з нескінченними потоками даних. Запропоновано концепцію вибору стратегії обчислень 
залежно від розміру даних та складності обчислень. 
Ключові слова: «ліниві обчислення», великі дані, обробка даних, оптимізація, потоки 
даних, обчислювальні стратегії, мови програмування. 
Abstract. The article examines the concept of lazy operations and its application for efficient 
processing of large volumes of data. The main principles of lazy computations, their 
implementation in various programming languages, and strategies for effective use in Big Data 
processing are analyzed. The advantages and limitations of the lazy approach are investigated, 
particularly regarding memory savings, performance improvement, and the ability to work with 
infinite data streams. A concept for selecting computation strategies based on data size and 
computational complexity is proposed. 
Ключові слова: lazy operations, Big Data, data processing, optimization, data streams, 
computing strategies, programming languages. 
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INTRODUCTION 

 

In the modern era of digital technologies, the volume of data requiring processing and analysis is 
growing exponentially. This creates significant challenges for software developers and data analysts. Traditional 
approaches that involve loading all data into memory become inefficient or impossible when working with truly 
large datasets.  

Lazy evaluation is an optimization strategy that defers the computation of an expression until the 
moment when its result is needed. This approach contrasts with eager computations, where expressions are 
evaluated immediately upon their definition. Lazy computations are based on several key principles that make 
them effective for processing large datasets [1]: 

1. Deferring computations until necessary: The evaluation of an expression is postponed until the result 
is actually needed. This avoids performing unnecessary operations, saving time and resources. 

function lazy_value(): 
    if value is not calculated: 
        value = calculate_value() 
    return value 

 
2. Storing expressions instead of their results: Instead of immediately computing the value of an 

expression, lazy computations store the expression itself. When the result is needed, the expression is 
computed only once. 

function lazy_list(): 
    index = 0 
    while true: 
        yield index 
        index += 1 
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3. Avoiding repeated computations by caching results: After the first computation, the result is stored 

(cached), allowing it to be reused without the need for recomputation. This significantly improves 
performance, especially with repetitive queries. 

cache = {} 
 
function memoized_function(input): 
    if input not in cache: 
        cache[input] = compute(input) 
    return cache[input] 

Lazy computing has become a key component of modern big data processing systems. From 
MapReduce [2], which laid the foundation for many modern systems, to modern frameworks such as Apache 
Spark [1] and Apache Flink [3], lazy strategies are used to optimize data processing. Apache Spark, in particular, 
makes extensive use of lazy computing to improve the efficiency of big data processing [1]. It allows the system 
to optimize execution plans and minimize unnecessary computations. Similarly, Apache Flink uses lazy 
strategies to efficiently process both batch and streaming data [3].  

 
 

1. LAZY OPERATIONS IN THE CONTEXT OF BIG DATA PROCESSING 
 

The exponential growth of data volumes in the modern digital world creates significant challenges for 
information processing systems. Traditional approaches to analyzing and manipulating large datasets often prove 
inefficient due to limitations in computational resources and execution time. In this context, the concept of lazy 
operations becomes particularly relevant as a powerful tool for optimizing big data processing [1]. Lazy operations 
allow deferring computations until the result is actually needed, which can significantly improve productivity and 
resource efficiency. This article explores the theoretical foundations and practical applications of lazy operations in 
the context of big data technologies, analyzing their impact on the performance, scalability, and energy efficiency 
of data processing systems. Special attention is given to comparing lazy and greedy algorithms, as well as 
examining the potential advantages and limitations of the lazy approach in various big data processing scenarios. 

 
Table 1  

Comparison of lazy and greedy algorithms 
Parameter Lazy Algorithms Greedy Algorithms 

Computation 
Strategy 

Deferred evaluation: computations are 
performed only when needed [4] 

Eager evaluation: all computations are 
performed immediately [5] 

Time Complexity Depends on the amount of actually used data, 
which is often less than the full set [6] 

Depends on the full size of input data, 
regardless of its subsequent use[6] 

Space Complexity Usually lower, as only computed data is stored 
in memory [7] 

Higher, as all computation results are stored 
in memory [7] 

Efficiency in 
Partial 

Computations 

High: only necessary elements are computed, 
saving resources [8] 

Low: all elements are computed in advance, 
even if not all will be used [8] 

Implementation 
Complexity 

Potentially higher due to the need to manage 
deferred computations and their state [9] 

Usually lower: the algorithm is implemented 
straightforwardly, without additional deferral 

logic [10] 
Execution Time 

Predictability 
Less predictable: depends on actual data usage 

and can vary  
More predictable: execution time is stable for 

a fixed input data size  
Adaptability to 
Streaming Data 

High: naturally integrates with the concept of 
data streams and real-time processing [11] 

Limited: requires special adaptations for 
efficient work with streams [11] 

Parallelization 
Possibilities 

More complex: requires special techniques for 
efficient distribution of deferred computations [3] 

Simpler: computations are easily distributed 
among parallel processes or machines [3] 

Energy Efficiency Higher when processing partial results: only 
necessary computations are performed [12] 

Lower for full computations: energy is spent 
on all operations, even redundant ones [9] 

 
The implementation of lazy computations in various programming languages is an important aspect of 

optimization and efficient resource management. This approach allows deferring the computation of expressions 
until their results are needed, which can significantly improve program performance, especially when working 
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with large datasets or complex algorithms [1]. Different programming languages support lazy computations in 
various ways: some, like Haskell, use them by default, while others provide special constructs or libraries for 
their implementation. 

Table 2  
Implementation of lazy computing in different programming languages 

 
Programming 

language Lazy evaluation features Programming 
language Lazy evaluation features 

Haskell 
- Uses lazy evaluation by default 

Java 
- Stream API for lazy operations on collections 

- Infinite data structures - Optional<T> for lazy computations 
- Deferred expression evaluation - Supplier<T> for deferred object creation 

Scala 

- Lazy collections (LazyList) 

Ruby 

- Lazy enumerators 
- lazy keyword for lazy 
initialization 

- Lazy module for creating lazy versions of 
methods 

- Stream API for lazy operations - LazyEnumerator library 

Clojure 

- Lazy sequences 
Kotlin 

- Sequences for lazy operations 
- Delayed computation via delay 
and force 

- lazy keyword for lazy initialization of 
properties 

- Lazy collections 
OCaml 

- Lazy data structures (Lazy module) 

Python 

- Generators and iterators - lazy keyword for creating lazy expressions 
- itertools module for lazy 
operations Erlang - Lazy lists through higher-order functions 

- itertools.chain library for lazy 
concatenation Go - Channels can be used to implement lazy 

computations 

JavaScript 

- Generators and iterators Perl - Lazy lists via List::Util::lazy function 
- Lazy module loading (with ES6) 

PHP 
- Generators for creating lazy iterators 

- Libraries (e.g., Lazy.js) for 
advanced lazy operations - Laravel Collection library for lazy operations 

C# 

- LINQ with deferred execution 
R 

- Lazy evaluation of function arguments 

- Lazy<T> for lazy initialization - purrr package for functional programming 
with lazy operations 

- Yield return for creating lazy 
sequences Julia 

- Lazy iterators 

F# 

- Lazy sequences (seq) - Macros for creating lazy data structures 
- lazy keyword 

Rust 
- Lazy iterators by default 

- Computation expressions for 
controlling laziness 

- lazy_static! macro for lazy initialization of 
static variables 

 
Advantages of Lazy Computations in Big Data Processing: 
Memory Savings: One of the main advantages of lazy computations is significant memory savings. 

When processing data that exceeds available RAM, lazy computations avoid loading all data into memory 
simultaneously. This is achieved by computing results only when needed, which also reduces memory usage 
peaks. Thus, it's possible to process large volumes of data even with limited resources [13]. 

Increased Performance: Lazy computations also contribute to improved system performance. This 
approach avoids unnecessary computations since calculations are performed only when the result is needed. 
Additionally, lazy computations allow for efficient parallelization of data processing, contributing to faster 
execution of complex computational tasks [14]. 

Working with Infinite Data Streams: One of the unique capabilities of lazy computations is real-time 
data processing. This is particularly useful when working with infinite data streams where the data volume is 
constantly growing. Lazy computations allow working with theoretically infinite sequences, processing data as it 
arrives [15]. 

Improved Code Modularity: Lazy computations promote improved code modularity. This approach 
allows separating data generation and processing logic into separate modules, making the code more 
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understandable and easier to maintain. Moreover, it enables creating compositions of operations, simplifying the 
implementation of complex algorithms [16]. 

Query Optimization: Another important advantage of lazy computations is the automatic optimization 
of complex operation chains. This reduces the number of data source accesses and increases query processing 
efficiency. Lazy computations allow optimizing query execution, reducing overall system load and improving its 
performance [17]. 

 
Limitations of Lazy Computations in Big Data Processing: 
However, the use of lazy computing in big data processing systems has its trade-offs. McSherry et al. 

discuss [18] the balance between scalability and efficiency, emphasizing the importance of careful system design. 
Debugging Complexity: One of the main issues with lazy computations is the complexity of debugging. 

Since the order of operation execution may not be obvious, tracing errors becomes a challenging task. Lazy 
computations can defer execution until results are actually needed, making error diagnosis more complicated [14]. 

Potential Performance Issues: While lazy computations can improve performance, they can also become 
a source of problems if used incorrectly. Repeated computations may occur with improper use of lazy structures, 
leading to additional costs. Additionally, creating and managing lazy structures can have overhead, affecting 
overall system performance [19]. 

Increased Code Complexity: Lazy computations require developers to understand specific concepts, 
which can increase code complexity. Inexperienced developers may find the code less intuitive, making it more 
difficult to maintain and develop. This can lead to errors and reduced software quality [16]. 

Limitations in Handling Side Effects: Lazy computations complicate the management of operations 
with side effects. These operations, such as data writing or user interaction, can become problematic due to 
deferred execution. This is particularly relevant when working with transactional systems where it's important to 
ensure correct execution of all operations [20]. 

Delayed Error Detection: One of the biggest problems with lazy computations is the delay in error 
detection. Errors may only manifest when results are computed, making their detection and localization more 
difficult. This can lead to significant time spent on diagnosing and fixing errors [14]. 

 
 

2. STRATEGIES FOR EFFECTIVE USE OF LAZY COMPUTATIONS IN BIG DATA 
PROCESSING AND PROGRAMMING 

 
Lazy computation is a powerful technique that can significantly enhance the efficiency of big data 

processing and programming. This comprehensive guide explores various strategies for implementing lazy 
computations, their applications, efficiency metrics, and recommendations for use. 

One of the fundamental strategies in lazy computation is stream data processing, which involves 
sequential processing of data as a continuous stream without loading the entire dataset into memory [12]. This 
approach is particularly effective for tasks such as web server log file analysis, real-time processing of IoT 
device data, and parsing large XML or JSON files [13].  

function process_stream(data_source): 

    while data_source.has_next(): 

        chunk = data_source.get_next_chunk() 

        process(chunk) 
        yield result 
The efficiency gains are substantial, with a 98% reduction in memory usage for 100 GB files and a 75% 

reduction in processing latency for data streams of 10,000 messages per second [20,21]. Stream data processing 
is optimal for datasets exceeding 10 GB, especially in environments with limited RAM (less than 16 GB), and is 
recommended for data streams surpassing 1,000 messages per second. 

Another crucial strategy is deferred aggregation, which allows storing intermediate results in a compact 
form and computing final aggregations only when necessary [19]. This technique is valuable for calculating 
statistics for large datasets, incrementally updating machine learning models, and computing aggregated metrics 
for business analytics. 

class DeferredAggregator: 

    intermediate_results = {} 

 

    function add_data(key, value): 

        if key not in intermediate_results: 
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            intermediate_results[key] = [] 

        intermediate_results[key].append(value) 

 

    function get_final_result(key): 

        if key in intermediate_results: 

            return aggregate(intermediate_results[key]) 

        else: 
            return None 
For a 1 TB dataset, deferred aggregation can reduce computation time by 60% compared to full 

aggregation, and it can provide a 10x speedup in model updating for a 100 GB dataset in incremental machine 
learning scenarios [14, 22]. This strategy is particularly effective for datasets larger than 100 GB, systems with 
frequent data updates (more than 1000 updates per hour), and distributed systems with limited network 
bandwidth. 

Caching intermediate results is another valuable strategy, especially in the presence of repetitive 
computations and when there's a need for performance optimization. This approach is effective for sparse data, 
frequently repeated calculations, and recursive algorithms. Zaharia et al. [23] introduced Resilient Distributed 
Datasets (RDDs) as a fault-tolerant abstraction for in-memory cluster computing, which effectively implements 
this caching strategy. Implementations often involve using memoization techniques to store intermediate results, 
implementing caching algorithms that consider data specifics, and applying data structures optimized for fast 
access, such as hash tables.  

cache = {} 

 

function cached_computation(input): 

    if input not in cache: 

        result = expensive_computation(input) 

        cache[input] = result 
    return cache[input] 
While this strategy can significantly accelerate computations for repeated calls and save CPU resources, 

it may increase memory usage and potentially lead to issues with cached data relevance. 
Lazy collections represent another powerful approach, generating elements on demand and allowing 

efficient composition of operations without immediate result computation. This strategy is useful for tasks such 
as generating Fibonacci number sequences, filtering and transforming large datasets, and composing data 
processing functions [28,29,30].  

class LazyList: 

    function __init__(transformer): 

        self.transformer = transformer 

        self.data = [] 

 

    function __getitem__(index): 

        while index >= len(self.data): 

            self.data.append(self.transformer(len(self.data))) 
        return self.data[index] 
 
When processing 1 billion records, lazy collections can achieve a 90% reduction in memory usage 

compared to eager computations, and they can provide a 40% execution speedup for datasets larger than 50 GB 
in complex processing pipelines [13]. Lazy collections are optimal for datasets exceeding 1 GB with complex 
transformations, especially in environments with limited computational power and scenarios involving a large 
number of intermediate operations (more than 10 transformations). 

Optimizing operations on distributed datasets is a crucial strategy in big data processing. Cheng and 
Yan [24] explored the application of lazy computing to enhance the performance of operations on Resilient 
Distributed Datasets (RDDs) within Apache Spark. Their research demonstrates that lazy computing can 
significantly boost the efficiency of data processing in distributed systems. 

class LazyRDD: 

    function __init__(data, transformations=[]): 

        self.data = data 

        self.transformations = transformations 
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    function map(func): 

        return LazyRDD(self.data, self.transformations + [('map', func)]) 

 

    function filter(predicate): 

        return LazyRDD(self.data, self.transformations + [('filter', predicate)]) 

 

    function collect(): 

        result = self.data 

        for op, func in self.transformations: 

            if op == 'map': 

                result = map(func, result) 

            elif op == 'filter': 

                result = filter(func, result) 
        return list(result) 
 
Deferred database queries offer a technique for building and optimizing complex database queries 

without immediate execution [16]. This strategy is particularly useful for building complex SQL queries in 
ORM, parallelizing multiple queries, and caching and optimizing frequent queries.  

class QueryBuilder: 
    function __init__(): 
        self.query_parts = [] 
 
    function select(columns): 
        self.query_parts.append(f"SELECT {columns}") 
        return self 
 
    function from_table(table): 
        self.query_parts.append(f"FROM {table}") 
        return self 
 
    function where(condition): 
        self.query_parts.append(f"WHERE {condition}") 
        return self 
 
    function execute(): 
        query = " ".join(self.query_parts) 
        return database.run_query(query) 
 
For complex queries to databases larger than 1 TB, this approach can reduce execution time by 70%, 

and when executing 100 queries in parallel, it can increase throughput by 85% [17]. Deferred database queries 
are optimal for databases exceeding 100 GB, systems with a large number of concurrent queries (more than 1000 
queries per second), and environments with complex query logic involving more than 5 table joins. 

Working with infinite data streams is a strategy that allows processing potentially infinite data 
sequences without storing the entire history [15]. This approach is valuable for real-time social media data 
processing, system monitoring and metrics analysis, and generating synthetic data for testing.  

function infinite_stream(): 
    index = 0 
    while True: 
        yield process_data(index) 
        index += 1 
 
function process_with_window(stream, window_size): 
    window = [] 
    for item in stream: 
        window.append(item) 
        if len(window) > window_size: 
            window.pop(0) 
        yield analyze_window(window) 
For a stream of 1 million messages per second, this strategy can reduce processing latency by 95% 

compared to batch processing, and for long-term monitoring (over 1 year), it can save up to 99% of disk space 
compared to full data storage [26, 27]. This technique is optimal for data streams exceeding 10,000 messages per 
second, environments with limited disk space, and systems requiring real-time processing with latency under 100 
ms. 
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3. OPTIMIZING AND IMPLEMENTING LAZY COMPUTATIONS IN 
PROGRAMMING 

 
Beyond these specific techniques, there are broader strategies for optimizing and implementing lazy 

computations in programming. One such strategy is the optimization of laziness level, which involves balancing 
between lazy and eager computations to optimize memory usage and execution time. This approach has been 
successfully applied in optimizing Spark RDD operations, as demonstrated by Cheng and Yan [24]. 
Implementation recommendations include conducting detailed code profiling to identify bottlenecks, using static 
code analysis tools, and applying lazy computations for operations with high computational complexity. While 
this strategy can improve resource efficiency and reduce memory consumption, it may also increase code 
complexity and potentially decrease readability. 

Integrating lazy computations with other optimization techniques is crucial for comprehensive 
optimization, especially in the presence of parallel computations. This strategy is particularly relevant for large 
volumes of data, highly parallel computations, and distributed systems. Frameworks like Dryad [25] have 
pioneered the approach of building distributed data-parallel programs from sequential building blocks, 
facilitating efficient parallel computations. Recommendations include combining lazy computations with parallel 
algorithms, using specialized data structures like lazy lists and trees, and applying functional programming 
paradigms. This approach can create a synergistic effect from combining different optimization strategies and 
increase overall system productivity, although it may also increase architecture complexity and potentially lead 
to conflicts between different optimization strategies. Modern frameworks like Apache Flink exemplify this 
integration, offering unified stream and batch processing capabilities [20]. 

Designing systems with lazy computation constraints in mind is essential for clear separation of pure 
functions and operations with side effects, and for increasing code modularity. This strategy is particularly 
relevant for mixed data types, complex computational systems, and functional programming languages. 
Implementation recommendations include separating pure functions from functions with side effects, using 
monads and functors to manage side effects, and applying design patterns specific to lazy computations. While 
this approach can improve code readability and maintainability and reduce errors related to unexpected side 
effects, it may also complicate the architecture for simple tasks and require additional developer training. 

Improving the testability of lazy computations is crucial for ensuring high reliability, especially in 
critical systems and those with high quality requirements. This strategy involves implementing property-based 
testing to detect non-obvious errors, developing specialized tools for testing lazy computations, and using formal 
verification techniques. While this approach can increase system reliability and stability and enable early 
detection of potential problems, it may also increase the time required for test development and necessitate 
specialized knowledge in testing lazy systems. 

While this approach can increase system reliability and stability and enable early detection of potential 
problems, it may also increase the time required for test development and necessitate specialized knowledge in 
testing lazy systems. However, integrating comprehensive testing methodologies with lazy computations is 
crucial for ensuring robust performance across diverse scenarios (see Fig. 1). 

The illustration presents a comprehensive strategy for selecting an appropriate computation approach 
based on data size and computational complexity. This decision tree framework offers valuable insights for 
optimizing algorithmic efficiency across various scenarios. 

The strategy bifurcates into eager computation and a hybrid approach for data smaller than or equal to 
available RAM. Eager computation is recommended when data fits comfortably in memory, allowing for 
immediate processing. The hybrid approach offers flexibility, combining eager and lazy techniques when data 
size is close to RAM capacity. 

When data exceeds RAM, lazy computation becomes the preferred strategy, emphasizing on-demand 
processing to manage memory constraints effectively. This approach is particularly crucial for big data scenarios 
where traditional eager methods may be impractical. 

The concept further differentiates strategies based on time complexity: 
1. Low-time complexity scenarios focus on direct computations for dense data and specialized 

structures for sparse data. This approach maximizes efficiency for straightforward computational tasks. 
2. High-time complexity scenarios necessitate more sophisticated techniques. Memoization and 

parallel computations are suggested for dense data, while sparse data may benefit from sparse matrix algorithms 
and compressed storage. 
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Figure 1 – Proposed  strategy of computation approach selection for big data 

 
The hybrid approach introduces an interesting middle ground, recommending a blend of eager and 

lazy strategies for low-complexity tasks, and applying complex optimization algorithms for high-complexity 
scenarios. 

Lazy computation strategies are particularly noteworthy for their emphasis on distributed and iterative 
methods, especially for handling large-scale sparse data. The suggestion to implement adaptive lazy evaluation 
for high-complexity tasks with sparse data underscores the importance of dynamic, context-aware processing in 
big data environments. 

This strategic framework provides a nuanced guide for algorithm selection, emphasizing the interplay 
between data characteristics (size and density) and computational demands. It highlights the importance of 
tailored approaches, from straightforward eager computations to sophisticated lazy and hybrid methods, to 
optimize performance across diverse computational landscapes. 

The inclusion of specific techniques like MapReduce [2], pipeline processing, and out-of-core 
computation reflects contemporary best practices in handling large-scale data processing challenges. This 
comprehensive approach ensures that the strategy remains relevant and applicable across various computational 
scenarios in modern data science and engineering contexts. 

 
CONCLUSIONS 

 
Lazy computing is a powerful tool for working with large data sets, allowing you to efficiently process 

volumes of information that exceed the available computing resources. The key advantages of this approach are 
memory savings, increased productivity, and the ability to work with potentially endless data streams. 

Lazy computing is effective for processing large data sets, especially when computing resources are 
limited. They significantly reduce memory usage and improve system performance, especially for data that 
exceeds the amount of available RAM. 

1. Lazy evaluation proves effective for processing large datasets, particularly when computational 
resources are limited. It significantly reduces memory usage and improves system performance for 
datasets exceeding available RAM. 

2. Five key lazy computation strategies are identified as most effective for big data processing: stream 
processing, deferred aggregation, lazy collections, deferred database queries, and handling infinite 
data streams. Each strategy shows advantages when working with data ranging from tens of 
gigabytes to terabytes. 

3. Lazy computations are particularly useful for processing infinite big data streams, enabling the 
handling of up to a million messages per second with minimal latency. This makes them valuable 
for real-time systems and stream analytics. 

4. When properly applied, lazy computations can reduce memory usage by 90-98% for datasets over 
100 GB, which is important for resource-constrained systems. 

5. For effective big data processing, combining lazy computations with other optimization techniques 
such as parallel computing and distributed systems is necessary. This integration is particularly 
relevant for petabyte-scale data processing. 
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6. The proposed concept for selecting computation strategies based on data size and computational 
complexity allows for optimal application of lazy, eager, or hybrid approaches in big data contexts. 
This is useful for systems dealing with diverse data types and volumes. 

7. Despite significant advantages, applying lazy computations to big data requires careful design and 
testing, especially regarding debugging and performance optimization. This highlights the need for 
specialized tools and methodologies for working with lazy computations in large-scale systems. 

Further research in this area could be aimed at developing more efficient algorithms and data structures 
for lazy computing, improving tools for working with lazy operations, and integrating lazy approaches with the 
latest big data processing paradigms, such as quantum computing and neuromorphic systems. 
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