

152

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА

ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

UDC 004.6

VITALII MISTRIAKOV, PAN TIANDE1

PROCESSING CONTENT QUERY REQUESTS FOR CSAF
DOCUMENTS USING A GRAPHQL-BASED API

West Ukrainian National University, Ternopil, 46009, Ukraine

Анотація. Рекомендації щодо безпеки є важливим ресурсом для осіб, які відповідають за
безпеку, оскільки вони пропонують інформацію про вразливі місця та ІТ-системи та
компоненти програмного забезпечення, які зазнали впливу. Ці рекомендації випускають
виробники, експерти з ІТ-безпеки або координаційні організації, щоб допомогти
користувачам зрозуміти вразливі місця та вжити заходів для їх усунення або зменшення.
Відсутність стандартизованого формату в різних виробників ускладнює роботу з порадами
щодо безпеки для спеціалістів із ІТ-безпеки. Для вирішення цієї проблеми було
запроваджено Загальну консультативну структуру безпеки (CSAF), яка надає
стандартизований формат порад щодо безпеки. Отже, деякі поради тепер пропонуються у
форматі CSAF. Збільшення кількості документів CSAF впливає на час обробки цих
документів фахівцями з ІТ-безпеки. Щоб підвищити ефективність обробки цих запитів, у
цьому документі пропонується зосередитися на документах, що містять певний вміст, а не
на обробці всіх документів. Для цього пропонується використовувати GraphQL, мову
запитів даних з відкритим кодом, яка дозволяє ефективно формалізувати запити
документів CSAF. Ця стаття спрямована на впровадження API на основі GraphQL для
підвищення ефективності обробки запитів документів CSAF.
Ключові слова: Common Security Advisory Framework, формат CSAF, API, GraphQL,
відповідна документація
Abstract. Security advisories serve as an essential resource for individuals tasked with ensuring
safety, as they offer information about vulnerabilities and the impacted IT systems and software
components. These advisories are released by manufacturers, IT security experts, or coordinating
organizations to assist users in comprehending vulnerabilities and taking steps to either eliminate
or reduce them. The lack of a standardized format across different manufacturers has made
working with security advisories more complex for IT security professionals. The Common
Security Advisory Framework (CSAF) was introduced to address this issue, providing a
standardized format for security advisories. Consequently, certain advisories are now offered in
the CSAF format. The increase in the number of CSAF documents affects the processing time of
these documents by IT security specialists.
To improve the efficiency of processing these queries, this paper proposes to focus on documents
containing specific content, rather than processing all documents. To do this, it proposes to use
GraphQL, an open source data query language that allows for efficient formalization of CSAF
document queries. This paper aims to implement a GraphQL-based API to improve the
efficiency of processing CSAF document queries.
Keywords: Common Security Advisory Framework, CSAF format, API, GraphQL, relevant
documentation

DOI: 10.31649/1681-7893-2024-48-2-152-161

INTRODUCTION

IT systems and software components often contain vulnerabilities, and identifying these vulnerabilities

and mitigating them is a primary challenge for IT security professionals [1,2].
Security advisories serve as an essential resource for individuals tasked with ensuring safety, as they offer

information about vulnerabilities and the impacted IT systems and software components. These advisories are
released by manufacturers, IT security experts, or coordinating organizations to assist users in comprehending
vulnerabilities and taking steps to either eliminate or reduce them [3].

1 © VITALII MISTRIAKOV, PAN TIANDE, 2024

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА
ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

153

The lack of a standardized format across different manufacturers has made working with security
advisories more complex for IT security professionals. The Common Security Advisory Framework (CSAF) was
introduced to address this issue, providing a standardized format for security advisories. Consequently, certain
advisories are now offered in the CSAF format. However, with the increase in the number of advisories formatted
in CSAF, IT security professionals are now required to sift through a much larger quantity of advisories to assess
their applicability. Relevant advisories are those that relate to the IT systems or software components for which
they are responsible [4,5].

To assess relevance, it is essential to query and examine each security advisory. The effectiveness of
these queries could be enhanced by focusing on documents containing particular content instead of querying all
documents indiscriminately. GraphQL, a data query language that is open-source, might provide a more efficient
method for querying CSAF documents. This research is aimed at implementing a GraphQL-based API to improve
the efficiency of processing requests for CSAF documents [5,6].

PROBLEM STATEMENT

Security advisories offer an overview of vulnerabilities and the affected products. Security advisories

are released by different manufacturers for their products or by IT security experts. The Common Security
Advisory Framework (CSAF) offers an organized method for these advisories, outlining specific roles, document
formats, and ways to distribute the information.

The CSAF standard offers two distribution methods: one based on directories and the other on
ROLIE.However, neither method allows for direct searching of CSAF documents by relevant content, such as
specific products. Instead, all documents must be downloaded to determine if a product is included and if it is
impacted by a vulnerability with a significant rating. This process needs to be conducted repeatedly for all new
and updated CSAF documents, which is both time-intensive and not readily automatable.

This method is inefficient and consumes valuable time and resource, Consequently, this paper's aims to
reduce the time interval between the release of a security advisory identifying affected products, and getting this
information to the appropriate people. By reducing this time, valuable human resources can be redirected from
searching for relevant information to taking action. To achieve this, an API is required that enables querying for
relevant security advisories. Ideally, it should allow for the bulk download of all relevant advisories for all
products in use. Previous work on a CSAF API serves as a foundation for this development.

 The enhanced CSAF API query functionality will empower users to search for specific components and
content within CSAF documents, as well as for properties linked to dependent content. For instance, it will
facilitate queries based on product names to identify products whose product IDs are referenced in the product
status of a vulnerability.. This streamlines the CSAF consumption process by eliminating an extra step, thus
speeding up the workflow.

To effectively manage the large volume of information, filter parameters will be implemented to refine
the results. Logical operators such as AND, OR, XOR, and NOT will facilitate more precise queries, enabling
users to combine or exclude criteria to align with specific requirements. Furthermore, the API will provide
functionality to verify the presence or absence of CSAF document components. This feature opens up new
possibilities for quality management, such as querying for missing components (e.g.,
/product_ull_product_names[]/product_ identification_helper). Achieving these capabilities will require a well-
structured approach.

RELATED WORKS

Existing solutions have explored API design for querying CSAF documents, including various REST-
based approaches and their limitations. REST APIs often face constraints due to their fixed routes and use cases
(see Table 1). For example, retrieving CSAF documents by CVE or device list requires separate queries.
Combining routes, such as querying for documents that match either one of two criteria, necessitates separate
requests and leads to the challenge of handling duplicates. This issue, known as the union problem, occurs because
documents may be retrieved more than once if multiple routes are queried. Complex queries involving logical
operators like XOR are also challenging with REST APIs [5,6].

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА
ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

154

Table 1
REST API limitations

Current REST-based solutions lack a feature to track updates to CSAF documents. Consumers must
manually compare different versions of documents to identify changes. As highlighted by existing work, the
absence of versioning support limits the ability to track document updates effectively [3-5].

Another challenge is the lack of a unique product identifier across CSAF documents. The attribute `/
products / names/full/product` offers a unique ID solely within the scope of an individual CSAF document. This
limitation prevents effective cross-publisher searches. While the product name could be used for searching across
publishers, variations in naming conventions and hierarchical structures further complicate this process. Full
product names might differ based on the CSAF publisher's conventions, and the product ID can change over the
document’s lifecycle.

Hierarchical structures in product trees, such as those shown in Fig 1, provide some relief. For example,
product names and versions are included in a structured format. However, variations in hierarchical depth and
naming conventions must be сonsidered in the proposed API design.

Figure 1 – Hierarchical structures in product trees

FEATURES OF CSAF API IMPLEMENTATION

To grasp the necessity of CSAF and, specifically, a CSAF API, it's important to understand the

background. The subsequent sections will elucidate the definition of a security advisory, its components, and the
process by which it evolves into a Common Security Advisory Framework (CSAF) document. It is essential to

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА
ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

155

discuss the various roles involved in the CSAF documentation process, emphasizing that this process begins with
the issuance of a security advisory and culminates in the remediation or mitigation of the identified vulnerability.

Considering that an earlier concept for the CSAF API exists, it is imperative to review it in order to
incorporate the lessons learned. To ensure the secure operation of the API, it is crucial to avoid common
vulnerabilities, necessitating a discussion of the Open Web Application Security Project (OWASP).
Vulnerabilities constitute one of the three fundamental elements of a CSAF document; thus, this discussion will
commence with an examination of vulnerabilities.

A weakness is classified as a vulnerability only when it can be demonstrably exploited. Upon the
discovery of a vulnerability, it is recorded in the Common Enumeration of Vulnerabilities Program database and
assigned a Common Vulnerabilities and Exposures (CVE) identifier. These CVE identifiers can be categorized
under a Common Weakness Enumeration (CWE) classification. Vulnerabilities are pertinent when they affect a
product within the organization's scope of responsibility or when they impact components of the organization's
own products.

When a vulnerability in a third-party software component is identified, manufacturers incorporating that
component into their products must assess whether their products are similarly affected. If it is determined that
their products are impacted and a solution or mitigating measures are available, these manufacturers will issue a
security advisory, detailing the affected products. The product tree serves as the second core element of a CSAF
document.

It is important to note that not all products from a manufacturer are typically affected by a vulnerability
to the same degree. Therefore, CSAF allows manufacturers to specify the product status for each vulnerability
within the CSAF document. The CSAF standard includes various product status categories (see Table 2). For
example, the status "not_affected" enables a manufacturer to indicate which products are not impacted by the
vulnerability, thereby reducing unnecessary inquiries from customers. While this "not_affected" status may not
seem dramatic, it provides reassurance to IT security professionals. Vulnerabilities and the affected products are
crucial components of any security advisory.

Here's the information presented as a table, rewritten in a similar style, Table 2.

Table 2
CSAF standard with various product status category

CSAF Product
Status Description

First Affected These represent the earliest versions of releases identified as being impacted by the
vulnerability.

First Fixed These versions contain the initial resolution for the vulnerability, although they may not
be the versions recommended as fixes.

Fixed These versions include a remedy for the vulnerability, yet they might not be the
recommended versions for resolution.

Known Affected These versions have been confirmed to be impacted by the vulnerability.

Known Not
Affected These versions have been verified as unaffected by the vulnerability.

Last Affected These are the final versions within a release train identified as impacted by the
vulnerability, with subsequent versions containing a fix.

Recommended These versions include a resolution for the vulnerability and are endorsed by the vendor
as the appropriate means to address the issue.

Under
Investigation

It has not yet been established whether these versions are affected by the vulnerability;
however, an investigation is currently in progress, with findings to be shared in a
forthcoming document release.

Security advisories are disseminated not only by manufacturers but also by IT security researchers and

coordinating entities such as the Federal Office for Information Security (BSI). These advisories encompass details
regarding vulnerabilities or groups of vulnerabilities, a catalog of affected products, and pertinent information
about the advisory document itself and its issuer. This constitutes the third fundamental element of a CSAF

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА
ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

156

document. Ideally, security advisories offer a definitive solution or, at the very least, mitigation strategies, thereby
facilitating IT security professionals in comprehending the issue, recommending appropriate actions, or
substantiating the necessity for intervention. The CSAF security advisory consolidates all this information into a
CSAF document. If new research provides additional insights, the advisory is updated. Similarly, if the severity of
a vulnerability changes, the advisory is revised accordingly.

In addition to the CVE identifier, a security advisory may encompass various details regarding the
vulnerability, including a rating and a concise description. The concise description is designed for the end-user,
who assesses its significance. When a rating is included, its relevance has been evaluated in an external context.
Nonetheless, the end-user must ascertain whether this context and the corresponding rating are applicable to their
specific circumstances. Despite this, the external assessment enables the end-user to pre-filter for potentially more
critical vulnerabilities.

Security advisories are generated not only by manufacturers but also by IT security researchers and
coordinating bodies, such as the Federal Office for Information Security (BSI). These advisories contain
information regarding vulnerabilities or groups of vulnerabilities, a list of affected products, and details about the
advisory document itself and its issuer. This constitutes the third essential component of a CSAF document.
Ideally, security advisories offer a definitive solution or, at the very least, mitigation strategies, thereby facilitating
IT security professionals in understanding the issue, recommending appropriate actions, or justifying the necessity
for intervention. The CSAF security advisory compiles all this information into a comprehensive CSAF document.
Should new research yield further insights, the advisory will be updated accordingly. Likewise, if the severity of a
vulnerability shifts, the advisory will be modified to reflect this change.

COMMON SECURITY ADVISORY FRAMEWORK

A CSAF document comprises a product tree, details concerning vulnerabilities, information about the

publisher and the document, and ideally, a vendor fix. An increasing number of vendors and other security
advisory providers are presenting their security advisories in the form of CSAF documents (Table 3).

CSAF enhances the security advisory landscape by offering a comprehensive framework. It delineates
specific roles, including CSAF publisher, CSAF provider, CSAF trusted provider, CSAF lister, and CSAF
aggregator, along with defined distribution methods such as ROLIE and directory-based approaches. Additionally,
it standardizes the structure of the security advisory using JavaScript Object Notation (JSON), encompassing
components such as /document, /product_tree, and /vulnerabilities.

Table 3
Providers that offer CSAF documents

The CSAF consumer represents the end user or client who engages with CSAF documents. These

documents may originate from various sources, including IT security researchers acting as CSAF publishers or
product manufacturers serving as CSAF providers. The CSAF lister functions as a directory, cataloging CSAF
providers and publishers, but does not supply the documents directly.

Conversely, the CSAF aggregator assumes a distinct role by collecting documents from multiple CSAF
publishers and providers, subsequently making them available for download, contingent upon the consent of the
CSAF publishers and providers. This consent is explicitly conveyed through the /mirror_on_CSAF_aggregators
attribute in the provider-metadata.json, which authorizes the aggregation of CSAF documents.

CSAF document comprises three primary components: the document itself, the product tree, and the
vulnerabilities.

The planned API will enable users to conduct searches within the content of these documents., making it
essential to understand the relevant sections of the CSAF document, which will be detailed in the following
subsections.

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА
ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

157

The document section of a CSAF document contains metadata pertaining to the publisher. This metadata
is easily identifiable when the document is sourced directly from the CSAF publisher or provider. However,
when the CSAF document is retrieved via a CSAF aggregator, this metadata becomes increasingly significant as
a search parameter within the CSAF API.

Agside publisher information, the canonical URL located at /document/references/url allows the CSAF
consumer to access the original source of the information. Direct access to first-hand information can provide
more comprehensive and timely updates.

The title of the document acts as a useful search parameter since it is typically distinctive. The Traffic
Light Protocol (TLP) label is likewise useful for both searching and sharing. There are various interpretations of
the TLP, and the CSAF documents issued by the Federal Office for Information Security in Germany (BSI)
follow the TLP definitions established by FIRST.ORG. As per this definition, only TLP labeled documents can
be shared without restriction (see Table 4 for short descriptions).

Table 4
Short Descriptions of TLPv1 Labels by FIRST.ORG, Inc.

The document/timeline/release_date/current is particularly useful for automation, especially when

dealing with the most recent documents. Interfaces designed to fetch the interfaces developed for the automatic
retrieval of the latest documents will utilize this attribute for querying (Figure 2).

 Each CSAF document is assigned a unique ID by the publisher, which can be located in the
/document/tracking/id attribute. This ID is unique within the context of the publisher. When combined with the
publisher namespace found in /document/publisher/namespace, it serves as a basis for querying the current status
of a CSAF document. Figure 1 illustrates an overview of the complete CSAF document object located at
/document.

In addition to document/timeline/release_date/current, the products specified in CSAF documents also
play a significant role in determining the relevance of the documents retrieved via the API.

In a CSAF document, products can be defined in various locations (see Table 5). For instance, entire
product families can be specified within the /product_tree/branches section. This section allows for an infinite
nesting of branches, which can make querying complex due to the unpredictable depth of these nestings.

Table 5

Options for Product Definition in the CSAF Document
Product ID Definitions

1 Product Tree Branches
GET /products/branches/
Lists branches within the product tree.

2 Full Product Names
GET /products/names/full
Returns a list of full product names.

3 Product Relationships by Full Product Name
 GET/products/{productId}/relationships

 Retrieves relationships for a product based on its full name.
4 Product Groups and IDs

GET /products/groups
Lists product groups and their corresponding product IDs.

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА
ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

158

Once a product is defined, it can be referenced throughout the CSAF document by its product ID (refer
to Table 6). For instance, products can be categorized into groups along the specified path:
/products/groups[]/product[].

Figure 2 – Document tree structure

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА
ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

159

Table 6

CSAF Document Elements That Reference a Product Using the Product ID
Produc

t ID
References

1 Product Group References by Product ID
GET /products/groups/{groupId}/references
Returns product references within a group based on a product ID.

2 Product Relationships by Reference
GET /products/{productId}/relationships/{referenceId}
Fetches relationships for a product based on a reference.

3 Product Relationships by Relates to Reference
 GET /products/{productId}/relationships/related/
 {referenceId}

 Fetches product relationships based on a related product reference.
4 Vulnerabilities Flags by Product ID

GET /vulnerabilities/products/{productId}/flags
Lists vulnerabilities for a product reference.

5 Product Vulnerability Status - First Affected
GET /vulnerabilities/products/{productId}/status/first-
affected
Lists the first affected product in a vulnerability.

6 Product Vulnerability Status - First Fixed
GET /vulnerabilities/products/{productId}/status/first-
fixed
Lists the first fixed product in a vulnerability.

7 Product Vulnerability Status – Fixed
 GET/vulnerabilities/products/{productId}/status/fixed

 Lists fixed products in a vulnerability.
8 Product Vulnerability Status - Known Affected

GET /vulnerabilities/products/{productId}/status/known-
affected
Lists products that are known to be affected.

9 Product Vulnerability Status - Known Not Affected
GET /vulnerabilities/products/{productId}/status/known-
not-affected
Lists products that are known not to be affected.

10 Product Vulnerability Status - Last Affected
GET /vulnerabilities/products/{productId}/status/last-
affected
Lists the last affected product in a vulnerability.

11 Product Vulnerability Status - Recommended
GET /vulnerabilities/products/{productId}/status/recommended
Lists recommended products in a vulnerability.

12 Product Vulnerability Status - Under Investigation
GET /vulnerabilities/products/{productId}/status/under-
investigation
Lists products under investigation for vulnerabilities.

13 Remediations by Product ID
 GET/vulnerabilities/remediations/{productId}

 Lists available remediations for a product based on its ID.
14 Scores by Product

GET /vulnerabilities/scores/{productId}
Fetches vulnerability scores for a product

Figure 3 depicts the product tree, showcasing its potentially infinite nesting within the ../branches[]

structure, highlighted in light blue.

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА
ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

160

The array /product_tree/full_product_names[] enumerates all products that are not part of
/product_tree/branches[]. Each product entry comprises a name, product_id, and product_identification_helper.
The product name serves as a valuable reference for querying dependencies associated with products relevant to
one's area of responsibility. Concentrating on specific products improves the relevance of search results,
particularly when evaluating vulnerabilities that may impact those products.

Figure 3 – CSAF document - product tree

DISCUSSION OF RESEARCH RESULTS

GraphQL can be likened to a specialized filter that allows users to retrieve precisely the data they

request, presenting only those elements of an object that have been explicitly queried (see Description of
GraphQL).

In the context of the intended API, however, a challenge arises. When a CSAF consumer queries for
elements, there may be a need to retrieve all elements of a CSAF document without prior knowledge of which
elements exist or having to query each possible element individually [6-10]. This situation can undermine the
following principle:

Submit a GraphQL query to your API to receive precisely the information you require—no excess and
no shortage. GraphQL queries consistently yield reliable outcomes. Applications that utilize GraphQL are quick
and dependable since they manage the data they receive rather than relying on the server.

Despite this challenge, GraphQL remains promising. It allows for targeted querying of individual
elements, validates inputs and outputs, and has a track record of successful implementation іon the Internet.
These benefits are particularly relevant for ensuring the secure operation of the intended API. Previous attempts
at API implementation, including those based on REST, provide valuable insights and experience that will
inform the development of the GraphQL-based API.

Creating a GraphQL-based API for CSAF documents brings a range of advantages, especially in
handling complex data structures like security advisories. Overall, a GraphQL API for CSAF documents offers a
high degree of flexibility, efficiency, and adaptability, making it easier to manage and deliver complex security
advisory data in a way that is both scalable and secure.

ОПТИЧНА І КВАНТОВА ЕЛЕКТРОНІКА В КОМП’ЮТЕРНИХ ТА
ІНТЕЛЕКТУАЛЬНИХ ТЕХНОЛОГІЯХ

161

CONCLUSIONS

The paper addresses the issue of processing security recommendations in a single data format. These
recommendations are issued by vendors, IT security experts, or coordinating organizations to help users
understand vulnerabilities and take steps to eliminate or mitigate them. To improve the efficiency of query
processing, this paper proposes to focus on documents containing specific content rather than processing all
documents. It proposes to use GraphQL, an open-source data query language that allows for efficient
formalization of CSAF document queries. It describes the features of implementing a GraphQL-based API to
improve the efficiency of CSAF document query processing.

Creating a GraphQL-based API for CSAF documents brings a range of advantages, especially in
handling complex data structures like security advisories. IT security professionals managing multiple products
would benefit from an API that can efficiently retrieve all relevant security advisories affecting their products.

REFERENSES

1. Trim, Peter R. J., and Yang-Im Lee. (2024). "Advances in Cybersecurity: Challenges and Solutions"

Applied Sciences 14, no. 10: 4300. https://doi.org/10.3390/app14104300
2. Park, M.; Lee, H.; Kim, Y.; Kim, K.; Shin, D. (2022). Design and implementation of multi-cyber range

for cyber training and testing. Appl. Sci., 12, 12546.
3. Xu, S.; Qian, Y.; Hu, R.Q. (2019), Data-driven edge intelligence for robust network anomaly detection.

IEEE Trans. Netw. Sci. Eng. 7, 1481–1492.
4. Langley Rock, Stefan Hagen, and Thomas Schmidt, (June 2022). eds. Common Security Advisory

Framework. Version 2.0 Committee Specification (CS) 02. OASIS, url:https://docs.oasis-
open.org/csaf/csaf/v2.0/cs02/csaf-v2.0-cs02.html.

5. CSAF-documentation, url: https://oasis-open.github.io/csaf-documentation/
6. Lawi, Armin, Benny L. E. Panggabean, and Takaichi Yoshida. (2021). "Evaluating GraphQL and REST

API Services Performance in a Massive and Intensive Accessible Information System" Computers 10,
no. 11: 138. https://doi.org/10.3390/computers10110138

7. Ala-Laurinaho, Riku, Joel Mattila, Juuso Autiosalo, Jani Hietala, Heikki Laaki, and Kari Tammi.
(2022). "Comparison of REST and GraphQL Interfaces for OPC UA" Computers 11, no. 5: 65.
https://doi.org/10.3390/computers11050065

8. Malo-Perisé, Pedro, and José Merseguer. (2022). "The “Socialized Architecture”: A Software
Engineering Approach for a New Cloud" Sustainability 14, no. 4: 2020.
https://doi.org/10.3390/su14042020

9. Swagger. OpenAPI Specification. Version 3.0.3. Swagger, Feb. 2020. url: https :
//swagger.io/specification/.

10. Smartbear. SoapUI Docs: Working With REST Services and WADL. https :
//www.soapui.org/docs/rest-testing/working-with-rest-services/. 2022.

Надійшла до редакції: 15.09.2024

MISTRIAKOV VITALII – master student, Computer Science department, West Ukrainian National University,
e-mail: pan54453@163.com

PAN TIANDE – PhD student, Computer Science department, West Ukrainian National University,
e-mail: pan54453@163.com

ВІТАЛІЙ МІСТРЯКОВ, ПЕН ТІАНДЕ
ОПРАЦЮВАННЯ ЗАПИТІВ КОНТЕНТУ CSAF ДОКУМЕНТІВ З ВИКОРИСТАННЯМ

API НА ОСНОВІ GRAPHQL
Західноукраїнський національний університет, Тернопіль Україна

mailto:pan54453@163.com
mailto:pan54453@163.com

	INTRODUCTION
	RELATED WORKS
	DISCUSSION OF RESEARCH RESULTS
	CONCLUSIONS
	REFERENSES

