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Анотація. В статті розглядається розбробка інтелектуальної бази знань на основі 
наукових статей з використанням великих мовних моделей в режимі генерації доповненої 
пошуком. Досліджено різні методи підвищення релевантності вибірки цитованих джерел 
та згенерованих відповідей мовної моделі та вибір підходів до побудови мовних 
генеративних систем з врахуванням специфіки наукових матеріалів українською та 
англійською мовами. Також розглянуто використання різних мовних моделей для 
генерації відповідей. В процесі дослідження обрано набір критеріїв для комплексного 
оцінювання генеративних систем та надано рекомендації для побудови наукових 
інтелектуальних баз знань. 
Розроблено інтелектуального агента, який дозволяє проводити пошук та аналізувати 
наукові статті у зручній інтерактивній формі з забезпеченням цитувань оригінальних 
документів. 
Ключові слова: штучний інтелект, база знань, великі мовні моделі, LLM, генерація 
доповнена пошуком, RAG. 
Abstract. The article describes the development of an intellectual knowledge base based on 
scientific articles using large language models in the mode of generation by augmented search. 
Various methods of increasing the relevance of the sample of cited sources and generated 
answers of the language model and the choice of approaches to building language generative 
systems taking into account the specifics of scientific materials in Ukrainian and English are 
investigated. The use of different language models for generating answers is also considered. In 
the course of the study, a set of criteria for a comprehensive evaluation of generative systems 
was selected and recommendations for building scientific intellectual knowledge bases were 
provided. 
An intelligent agent has been developed that allows searching and analyzing scientific articles 
and providing document citations in a convenient interactive form. 
Key words: artificial intelligence, large language models, LLM, retrieval augmented generation, 
RAG, knowledge base. 
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INTRODUCTION 

 
Retrieval-Augmented Generation (RAG) has emerged as a powerful approach, leveraging Large 

Language Models (LLMs) with external knowledge retrieval to significantly improve AI's ability to handle 
complex tasks requiring information and reasoning. By integrating external data, RAG enables generative 
models to produce more relevant and factually grounded responses with provided citations. That feature is 
particularly valuable in building robust knowledge bases for scientific research or internal corporate data.  

However, real-world implementations of the RAG knowledge bases contain lots of ongoing challenges 
that can impact their practical application. Among them are management of noisy input data, retrieving of a 
proper context for the question, processing of multimodal information that contains images, formulas and table 
data. Finding a proper balance between accurate information retrieval and the adaptability of the generative 
model remains crucial for the overall performance and reliability of these systems [1]. 

 
 

© С.В. ХРУЩАК, О.М. ТКАЧЕНКО,  І.С. КОЛЕСНИК 2025 
 

mailto:Natalia.zabolotna@gmail.com
mailto:iskolesnykcom@gmail.com


 

  CИСТЕМИ ТЕХНІЧНОГО ЗОРУ І ШТУЧНОГО ІНТЕЛЕКТУ  
З ОБРОБКОЮ ТА РОЗПІЗНАВАННЯМ ЗОБРАЖЕНЬ 

 

90 

This paper investigates methods for improving the efficiency of RAG frameworks specifically for the 
task of building and maintaining scientific knowledge bases, mainly focusing on strategies that enhance retrieval 
quality and improve the integration of retrieved documents within the generation process. Through systematic 
experimentation and analysis, the study aims to provide insights and practical recommendations for designing 
RAG-enhanced knowledge management systems that are more scalable, accurate, and efficient. 

The purpose of the article is to increase the relevance of the results of large language models when used 
in the retrieval augmented generation mode for multilanguage scientific articles. To achieve this goal, we need to 
solve the following tasks: 

– to select a set of criteria to be used for evaluating the relevance of the results of large language model 
output; 

– to improve the architecture of an RAG intelligent system adding full content retrieval of the related 
articles and re-ranking of the content; 

– analyze impact of using different language models for the answer generation. 

ANALYSIS OF RAG-BASED INTELLIGENT SYSTEMS 

Large Language Models (LLMs) are a class of advanced neural network architectures, typically 
characterized by their substantial depth and extensive parameter counts and usually trained on a vast corpora of 
unlabeled textual data. This large-scale pre-training enables prominent LLMs, including GPT-series, PaLM, 
LLaMA, and Claude, among others, to develop a sophisticated understanding of linguistic patterns, semantic 
relationships, and contextual nuances of human texts. Core functional applications of LLMs encompass text and 
source code generation, the engineering of intelligent conversational agents, the description of visual 
information, and the detection of anomalies within complex datasets. The versatility of these models has fostered 
their widespread integration across various applied domains, including the development of adaptive educational 
platforms, the creation of sophisticated financial instruments, and their utility as analytical assistants in scientific 
research, particularly for tasks like literature review and data interpretation [2].  

Despite their significant potential and demonstrated efficiency, LLMs possess inherent limitations that 
necessitate careful considerations of their usage. A primary constraint is the substantial computational 
expenditure required for their training and inference. Furthermore, practical implementations often impose 
restrictions on the input query length (token limits), which can curtail the complexity of prompts or the volume 
of contextual information provided [3]. A notable challenge arises when LLMs encounter queries related to 
highly specialized or niche domains underrepresented in their initial training corpora. This can lead to a 
substantial degradation in output accuracy and relevance. Models may also exhibit a tendency towards 
overgeneralization, resulting in responses that, while fluent and looks plausible, lack precision or contain many 
terminological inaccuracies. Another aspect is that the knowledge encoded within LLMs is inherently static and 
reflects the temporal horizon of their last training dataset, leading to potential obsolescence as new information 
emerges, while the cost and time intensity of retraining impede frequent updates. A critical and widely discussed 
issue is the phenomenon of "hallucinations," wherein the model generates plausible sounding, but totally 
incorrect or unsubstantiated information, likely stemming from the model's internal mechanisms for pattern 
completion rather than genuine comprehension or data retrieval [4]. Additionally, LLMs typically lack the 
capability to provide accurate citations or attribute information to specific sources, which makes them harder to 
use in scientific and academic contexts where verifiable provenance is paramount. 

To address these limitations and enhance the reliability and accuracy of LLM outputs, various 
techniques are actively used. Those include sophisticated prompt engineering strategies designed to guide the 
model's focus and constrain its output space, targeted fine-tuning of pre-trained models on domain-specific 
datasets to saturate model with specialized knowledge, and the integration of LLMs with external knowledge 
bases or live data retrieval systems. Among these, architectural approaches centered on retrieval augmented 
generation (RAG) have emerged as particularly effective. This method combines the information retrieval 
capabilities of dedicated search systems with the generative capabilities of LLMs. By grounding the generation 
process in relevant, retrieved documents, this method aims to substantially reduce the tendency for 
hallucinations, improve the factual accuracy of responses, and enhance the overall trustworthiness of LLM-
generated content by providing information sources, thereby mitigating some of the most pressing challenges 
associated with these powerful models [5]. 

The basic idea of RAG is that before synthesizing a response it involves a preparatory information 
retrieval step from an external knowledge repository (a vector database or indexed document store). The task of 
the RAG system is to identify and retrieve information chunks that are most relevant to the input query and the 
current context. This retrieved contextual data is subsequently provided as an input to the LLM, which then 
instructed to formulate an answer explicitly grounded in this supplementary information. This methodology 
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significantly mitigates the occurrence of "hallucinations" or the generation of unsubstantiated content, thereby 
enhancing the factual accuracy and depth of the output. Moreover, it inherently supports the capacity to provide 
citations and references to the source documents, thereby enabling verification of the generated results [6].  

There are various implementations of RAG systems, but most usually they consist of following 
elements: a storage preparation and vectorization unit, a retrieval unit that uses vector similarity search or hybrid 
methods that combine semantic and keyword search to find relevant information to a question in the store, and a 
context generation unit where the received pieces of information are selected, prepared and transferred to a 
language model for generating an answer. 

 

 

Figure 1 – Basic RAG system diagram 

For storing the vectorized documents usually any of specialized vector databases like Chroma, QDrant 
or Pinecore are used [7]. Also many modern relational and NoSQL databases actively adding vector operations 
and storage support, among them PostgreSQL, MongoDB and others.  These databases are used to store not only 
the primary data, but also metadata and document’s corresponding vector representations, commonly referred to 
as embeddings. These embeddings, generated by distinct machine learning models, encapsulate the semantic 
essence of the source data. The utilization of such vector representations facilitates efficient similarity searches, 
enabling the rapid identification of records that are semantically close to a given query. A common 
preprocessing step involves the segmentation of text documents into smaller, often overlapping, chunks prior to 
their ingestion into the vector database. This chunking strategy aims to enhance the granularity of the retrieval 
process, thereby increasing the likelihood of surfacing the most relevant information segments in response to a 
query. Subsequently, during the retrieval phase, when records semantically relative to the user's query are 
identified, a standard practice is to select the top-k results. These selected segments are then integrated into the 
context window of a large language model to narrow its response generation.  

However, despite the considerable promise of Retrieval Augmented Generation (RAG) systems to 
enhance the reliability and contextual relevance of generated text, their practical implementation is frequently 
accompanied by several challenges. Among these, the retrieval process often finds non-relevant or sub-optimal 
text fragments from the vector stores. Also, many conventional RAG architectures unable to process non-textual 
information, such as charts, diagrams, and figures, which are often crucial for comprehensive understanding [6]. 
These limitations are especially acute when working with scientific information, which usually have a complex 
structure, rich terminology and frequently rely on visual elements. 

This research addresses the development and systematic evaluation of an intelligent knowledge base, 
based on a RAG framework, specifically considering interactions with the academical data. The input dataset for 
this study comprises 105 scientific technical articles published. The articles come in multiple languages, rich 
with visual information and math. The proposed system incorporates several enhancements to improve retrieval 
and generation phases of the system, including the integration of computer vision techniques for the extraction 
and interpretation of graphical materials, a preliminary document categorization and re-ranking. These integrated 
approaches are designed to improve the relevance and correctness of responses generated by large language 
models when answering field related questions. The efficacy of the developed system was assessed at each stage 
of its development and implementation. 
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EVALUATION OF THE DEVELOPED SYSTEM 

Before doing any changes to the system, it is important part to choose the criteria and methods used to 
evaluate them. The main criterion in this paper is the relevance and completeness of the model’s answers to 
questions related to scientific articles in the database.  

First let’s consider the retrieval step, the primary objective of it is to ensure that the documents or 
fragments selected are semantically aligned with the query intent. To quantify retrieval performance, the 
following similarity metrics were employed: for queries with known relevant documents (established via ground-
truth datasets), we calculated the recall at top-k retrieved results, the metric then assessed how often the correct 
or most relevant documents were successfully retrieved within the top k candidates. This metric is called Mean 
Reciprocal Rank (MRR) and usually is used to evaluate the ranking quality by considering the position of the 
first relevant retrieved item. A higher MRR score suggested that relevant documents appeared earlier in the 
retrieval list, minimizing the search burden on the generation model. Also to ensure that categorization enhanced 
retrieval precision, we measured the consistency between the predicted category of the query and the categories 
of retrieved documents. High categorization consistency correlated with improved retrieval quality and 
generation relevance [8]. 

For automated performance evaluation of the language model answer generation, two classes of metrics 
are usually used: metrics based on ground truth, which evaluate the similarity of the generated system response 
to the reference answer, and metrics without ground truth (zero-reference), when there is no reference answer 
and the relevance, logic, or factuality of the response is checked. 

One of the popular metrics that is used to compare the semantic similarity of the model’s response with 
the ground truth is embedding based metric. Embedding models are trained on a very large corpus of text itself, 
so their similarity results quite well alight with human perception. In our case a cosine distance between the 
calculated embedding vectors, obtained from OpenAI service was used. The formula for the reference (𝑉𝑒) and 
the generated (𝑉𝑔) answer vectors in this case is: 

 

  𝑆𝑖𝑚�𝑉𝑒 ,𝑉𝑔� = 𝑉𝑒����⃗ ∙𝑉𝑔����⃗

‖𝑉𝑒‖∙�𝑉𝑔�
 (1) 

 
Additionally, we used LLM evaluation metrics, in which the model receives both texts as input and is 

tasked with evaluating their similarity based on various criteria: relevance, truthfulness, style and completeness. 
To cover evaluation methods without a basic truth, the language model perplexity scores (MP-PPL) were used. 
This value indicates of how confidently the model is able to predict the sequence of words, the higher the 
confusion, the less confident the model is in predicting the observed sequence. It is computed by the formula: 

 
 𝑃𝑝𝑙 = exp �−∑ log �𝑃𝜃�𝑥𝑖�𝑥𝑗 ≠ 𝑥𝑖��𝑡

𝑖=1 �, (2) 
 

where 𝑃𝜃 is the logarithm of the probability of the i-th output token of the model, provided that other tokens 
appear in the sentence [8]. And the last approach that was used for model evaluation is to use another LLM to 
evaluate the completeness and relevance of the answer given only question and the answer [9].  

To obtain a ground truth answers for evaluation a random set of articles was picked and 60 questions 
were manually generated on the material, both specific to a single article and covering information from several 
articles and graphical information. Since the volume of articles and the number of meta-parameters and 
components are quite significant, it was important to automate the testing process so it can be easily run on every 
iteration. Therefore, the proposed evaluation methods were implemented in code and integrated with the 
LangGraph service, that provides tracing and evaluation capabilities. 

 

DEVELOPMENT OF A MULTIMODAL RAG SYSTEM WITH RE-RANKING 

The intelligent system can be divided into two main, relatively independent modules: uploading and 
processing. The module for parsing and uploading articles to the vector storage is triggered only when 
documents are initially uploaded or updated. For improving that part it is proposed to add images and diagrams 
recognition to the ingestion step with additional pre-processing needed for later steps: extracting keywords, short 
description, and category of the article. The processing phase in turn can be split into two major phases: context 
retrieval and answer generation, it is possible to improve and measure them separately as well by adding 
categorization and re-ranking. The proposed updated architecture is presented on the Figure 2.  
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Let us consider the main elements of the subsystem for processing and uploading documents to the 
system. Before being uploaded to the vector store, documents undergo preliminary processing, where parts that 
are not directly related to the article are removed: title pages, information about the journal, table of contents, 
etc. After that, they are divided into separate categories; if there are keywords present in the article they are 
extracted, otherwise the category is determined using the GPT-4o mini model with instructions for determining 
categories based on the text of the article. The resulting categories, keywords, and links to document related to 
the same article are added as metadata to the corresponding records in the vector repository and are further used 
to improve search relevance. 

 

 

Figure 2 – Proposed RAG system architecture diagram 

Categorization plays a central role in improving retrieval efficiency and generation relevance as it 
enables segmented retrieval, where queries are first routed to the most semantically appropriate category before 
similarity search is performed. By narrowing the search space, categorization can significantly reduce retrieval 
noise and computational cost, while simultaneously improving the precision of the retrieved contexts.  

After categorized retrieval of the related documents it is proposed to re-rank them based on keywords, 
which are usually provided in the articles or can be obtained using a separate LLM pre-processing step. For 
implementing re-ranking step a BM25 method is used [10]. As an input it gets documents and keywords 
retrieved from the vector storage along with other parts related to the same articles and evaluates the retrieved 
passages based on term frequency and document length normalization to assign more accurate relevance scores. 
Additionally, it is proposed to store generalized descriptions generated by the LLM during articles loading step, 
with links to original documents separately, which allows better contextualization of answers to general 
questions on the topic, that needs to fit multiple articles into the LLM context window. The resulting 
summarized information about all articles is added separately to the vector storage and linked with other 
information from the document using metadata. As an optimization, the summarization, categorization and 
keywords retrieval blocks are combined into a single LLM processing step, which allows getting all values in 
one pass of the model. 

As the primary focus of the developed system is the processing of scientific texts, the proposed 
architecture adds image and diagram recognition and their conversion into textual descriptions [11]. This can be 
done only once per document in the pre-processing step using any language model with image recognition 
support, our tests shown that gpt-4o multimodal model gives the best results for the task. The resulting textual 
description of the image data then added to the main text of the article. The last step before uploading documents 
is to split the texts of articles into separate overlapping blocks, convert them to vector representation, and upload 
them to a vector database. At the same time, all previously obtained information is added to the metadata of the 
documents, which allows the system to select other parts of the document based on a single found record. 

During the main operation of the system, the incoming question goes through a chain of processors that 
fill it with additional information. First, the previously stored history of interactions with the agent is retrieved, 
which improves understanding of the question context by the system. Since the context of language models is 
limited, and older history is less important than relevant documents, the received history is truncated to 1000 
tokens. Further, the question and interaction history is classified using the list of categories determined during 
the upload phase, that allows to narrow down the search and thus increase the relevance of the results found. If 
the categories cannot be determined, the search will be performed on the entire articles dataset. The question 
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category is determined using the gpt-40-mini model, even though Gemini model was tested as well, receiving 
similar results. The next step is to search for relevant documents in the vector repository. The search for 
documents is performed by finding the documents that have the smallest cosine distance between the embedding 
vectors to the question embedding.  

For testing the proposed RAG-system a modular prototype using widely adopted tools and frameworks 
was implemented: a set of Jupyter notebooks were used for development and experimentation, LangChain 
framework for pipeline orchestration, FAISS was used as the local vector storage for context retrieval, and 
LangSmith for detailed tracing and observability. A total of 107 articles in PDF format were downloaded from 
the journals of Vinnytsia National Technical University and processed by the system. Many articles contained 
additional information about the journal, authors positions, etc. so they were passed through the pre-processing 
step to clean up all the irrelevant information. The LangChain library provides a set of tools, like PyPDFLoader, 
which were used to process and vectorize the PDF documents page by page, or LLMImageBlobParser that 
allowed to plug in different multimodal LLM models for image recognition during pre-processing step. Since 
language models produce data in an arbitrary format, to ensure a predictable structured result, OpenAI's 
integration with Pydantic and LangChain tools was used, which allowed to parse the model's output and return it 
in the form of a Python object of the required structure. When processing queries, the MemorySaver class, 
provided by the LangChain library, was used to save and load the message history. 

After that, the texts are classified and divided into smaller fragments of 1000 tokens with an overlap of 
200 tokens between fragments. Each text fragment is then converted into a vector in a multidimensional space 
using the OpenAIEmbeddings embedding model. The dimension of vectors for this model is 1536. These vectors 
describe the content of the fragments and allowed to calculate the similarity between the user's query and the 
parts of the corpus. After that, the obtained vector representations of articles and summarized information along 
with metadata were added to the FAISS index. The article metadata included file names for providing links to 
sources, defined article categories, keywords and neighbouring text fragments. The query category is determined 
based on both the current question and the historical context, for which the gpt-4o model with a set of 
instructions for determining the category is used. All new information received is added to the main question at 
each stage of its passage through the processing chain. To facilitate system testing, an interactive agent built into 
Jupyter was created using the Gradio component library, which allows testing the system with different handler 
settings and display intermediate search results. The use of interactive chat allowed customizing the meta-
parameters of document sampling and classification and test the system's performance on the go.  

As a result, the developed system allows analyzing uploaded scientific articles and formulating 
generalized conclusions about individual articles or topics in general, providing citations for generated answers. 
The architecture is designed in such a way that most components can be replaced or excluded from the system, 
which allows for a better assessment of the impact of each change on the overall system performance. 

The LangSmith framework was used as a framework for testing and monitoring experiments. This 
framework allows to obtain detailed execution traces, capturing every step of the retrieval and generation process 
from query classification to retrieval selection and final generation, as well as each pipeline component's inputs 
and outputs. The framework also allows to capture retrieval times, generation delays, and categorization 
accuracy enabling more precise tuning of the specific parts of the system. The ground truth questions were 
uploaded as a dataset to LangSmith and used to first evaluate the retrieval phase of the system using MRR 
metrics, the results of the evaluation are shown in Figure 3. 

 

 

Figure 3 – Retrieval step evaluation results using MRR 
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MRR evaluation results show how good on average system in finding the correct chunk of text related 
to the ground truth questions. Each test was repeated at least 3 times and results represents the average value. For 
the base case of retrieval that obtains top 3 related documents from the vector storage the result is 6.64 points on 
average. Adding retrieval of the other parts of the same article with re-ranking step allows to improve the result 
to 7.60 and addition of the classification block with routing allowed to improve the result further to 8.13. The 
classification step is performed by the LLM, but the task is very simple, so using both GPT4.0 and Gemini for 
the classification shown similar results on average. 

The next step was evaluating the final results of the LLM answers generation on different improvement 
stages and using different LLMs. The evaluation results are presented on the Fig. 4. The paper considers only the 
best average results after hyperparameters and prompts tuning using two different LLMs: GPT4.0 and Gemini. 
All of these metrics operate on the principle that the higher the value, the better the response quality. 

 

 

Figure 4 – System evaluation results using different metrics 

The major variants that were considered on the graph are: base model – the basic RAG architecture 
based on GPT-4.0 model, model with added articles re-ranking, model with re-ranking and categorization and 
the final variant that adds images OCR data to the vector storage. The metrics that are displayed are: accuracy – 
comparison of the reference and the generated answer using another LLM, embeddings distance – the average 
value of the cosine distance between the embedding vectors for the model response and the reference response, 
and an assessment of the answer by the other LLM model (GPT 4.0), with instructions provided to check the 
relevance and accuracy of the answer without specifying a reference answer. The results are also presented in the 
Table 1. 

Table 1  

Model evaluation results 

Metrics GPT4.0 base 
model 

GPT4.0 with              
re-ranking 

Gemini with              
re-ranking 

GPT4.0 with 
re-ranking 

and classifier 

Gemini with re-
ranking and 

classifier 

Final GPT4.0 
model with 

added image 
recognition 

 
Accuracy 0,6 0,70 0,67 0,73 0,80 0,87 

Embedding 0,105 0,134 0,124 0,113 0,120 0,143 

LLM correctness 6,15 7,67 8,53 8,87 9,00 9,11 

As can be seen from the testing results, each architecture improvement has a positive impact on system 
accuracy, with re-ranking being the most impactful. On the other hand, image recognition feature adds quite little 
on top of the existing changes, which also can be caused by the limited number of ground truth questions that 
rely solely on the data from images. As for the models GPT4.0 shows slightly better results in most metrics, 
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compared to Gemini, so it was chosen for the final system variant.  At the same time, the request processing time 
increased from 3,9 for the base system to 7,4 seconds, which is acceptable for systems of this type. Thus, the 
architecture is effective from a practical point of view and demonstrates the relevance of responses and stability 
in various usage scenarios. 

CONCLUSIONS 

In this article, an improved architecture of an intelligent system based on retrieval augmented 
generation, focused on working with scientific information in both Ukrainian and English, was developed and 
implemented. The system integrates the capabilities of large language models with mechanisms for 
categorization, generalization and processing of graphic information of loaded documents. A set of metrics was 
analyzed and selected, by which the system was evaluated, and a series of experiments were conducted for a 
comprehensive assessment of each introduced architectural change. The results demonstrate an increase in the 
relevance of responses compared to basic generation approach. At the same time, each new element of the 
system provides computational complexity and time for processing system requests. 

Therefore, the proposed system can be used as a basis for creating intelligent knowledge bases in 
education institutions, as well as for the further development of language generative systems adapted to the 
specifics of scientific texts in Ukrainian and English. 

One of the directions of further research can be the use of special models for working with scientific 
articles, such as, for example, MathCoder, instead of general-purpose language models. Using external re-
reanking services that allows to further improve the context used for answer generation. As well as using the 
MCP protocol to integrate external knowledge systems and utilities. 
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