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Анотація. У статті досліджено можливості застосування глибоких нейронних мереж для 
аналізу оптичних зображень судинної сітківки у пацієнтів із цукровим діабетом з метою 
підвищення точності автоматизованої діагностики діабетичної ретинопатії. Розглянуто 
сучасні підходи до обробки ретинальних зображень із використанням згорткових 
нейронних мереж, що забезпечують автоматичне виділення інформативних ознак 
судинних змін без ручного формування дескрипторів. Запропоновано методику 
оцінювання ефективності класифікації на основі показників точності, чутливості, 
специфічності та площі під ROC-кривою (ROC-AUC), а також проведено детальний ROC-
аналіз із числовими розрахунками. Додатково виконано кореляційний аналіз між 
результатами роботи моделі та рівнем глікемії крові (HbA1c), що дозволило оцінити 
клінічну релевантність отриманих прогнозів. Отримані результати підтверджують високу 
діагностичну здатність глибоких нейронних мереж та доцільність їх використання як 
допоміжного інструменту у системах комп’ютеризованої підтримки прийняття медичних 
рішень. 
Ключові слова: цукровий діабет, діабетична ретинопатія, оптичні зображення сітківки, 
глибокі нейронні мережі, машинне навчання, ROC-AUC, кореляційний аналіз. 
Abstract. The paper investigates the application of deep neural networks for the analysis of 
optical images of the retinal vascular retina in patients with diabetes mellitus in order to improve 
the accuracy of automated diabetic retinopathy diagnosis. Modern approaches to retinal image 
processing based on convolutional neural networks are considered, enabling automatic extraction 
of informative vascular features without manual feature engineering. A comprehensive 
evaluation methodology is proposed using classification performance metrics such as accuracy, 
sensitivity, specificity, and the area under the ROC curve (ROC-AUC), accompanied by a 
detailed ROC analysis with numerical calculations. Additionally, a correlation analysis between 
model predictions and blood glucose level indicators (HbA1c) is performed to assess the clinical 
relevance of the obtained results. The findings demonstrate the high diagnostic potential of deep 
neural networks and confirm their suitability for integration into computer-aided decision 
support systems in medical diagnostics. 
Keywords: diabetes mellitus, diabetic retinopathy, retinal imaging, deep neural networks, 
machine learning, ROC-AUC, correlation analysis. 
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ВСТУП 
Цукровий діабет є одним із найпоширеніших хронічних неінфекційних захворювань у світі та 

супроводжується розвитком системних мікросудинних ускладнень, які істотно погіршують якість життя 
пацієнтів і підвищують ризик інвалідизації. Одним із найбільш інформативних проявів мікроангіопатії є 
зміни судинної сітківки ока, що відображають загальний стан мікроциркуляторного русла організму та 
корелюють зі ступенем глікемічного контролю. 

Оптична фундус-фотографія є неінвазивним, доступним і широко застосовуваним методом 
оцінювання стану судин сітківки. Водночас візуальна інтерпретація фундус-зображень значною мірою 
залежить від досвіду лікаря та супроводжується суб’єктивністю, що обмежує ефективність масового 
скринінгу, особливо в умовах дефіциту кваліфікованих фахівців. 
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Останніми роками стрімкий розвиток методів штучного інтелекту, зокрема глибоких нейронних 
мереж, відкрив нові можливості для автоматизованого аналізу медичних зображень. Згорткові нейронні 
мережі продемонстрували високу ефективність у задачах виділення судинних структур, виявлення 
патологічних змін та класифікації фундус-зображень. Водночас актуальним залишається питання не 
лише точності автоматичної класифікації, а й клінічної інтерпретованості отриманих результатів та їх 
зв’язку з об’єктивними показниками стану пацієнтів, зокрема рівнем глікемії. 

У цьому контексті доцільним є комплексний підхід, що поєднує сегментацію судинної сітківки, 
класифікацію оптичних зображень за допомогою глибоких нейронних мереж та кількісне оцінювання 
результатів із використанням стандартних метрик якості й статистичного аналізу. Такий підхід дозволяє 
не лише автоматизувати процес виявлення судинних патологій, але й оцінити його потенційну клінічну 
значущість. 

Метою даного дослідження є підвищення ефективності автоматизованого оцінювання стану 
судинної сітківки у пацієнтів із цукровим діабетом шляхом застосування глибоких нейронних мереж для 
аналізу оптичних зображень сітківки ока, а також встановлення статистично обґрунтованого зв’язку між 
результатами роботи моделі та рівнем глікемічного контролю. Для досягнення поставленої мети у роботі 
реалізовано комплексний підхід, що охоплює попередню обробку та сегментацію судинної сітківки, 
побудову та навчання згорткової нейронної мережі для класифікації зображень, кількісне оцінювання 
якості класифікації з використанням стандартних метрик і ROC-аналізу, а також кореляційний аналіз між 
вихідними оцінками моделі та показниками глікемії з метою оцінювання клінічної релевантності 
отриманих результатів. 

 
МАТЕРІАЛИ ТА МЕТОДИ ДОСЛІДЖЕННЯ 

 
Матеріалами дослідження слугували оптичні зображення судинної сітківки ока, отримані 

методом кольорової фундус-фотографії. Такий тип зображень широко використовується для діагностики 
діабетичної ретинопатії, оскільки мікросудинні ураження є одним із найбільш ранніх і специфічних 
проявів цукрового діабету [1, 3, 16]. 

Морфологічні зміни судинної сітківки, зокрема підвищена звивистість, потовщення судин, поява 
мікроаневризм і крововиливів, напряму пов’язані з порушенням глікемічного контролю та 
прогресуванням захворювання [14–16]. Це обґрунтовує доцільність використання комп’ютерних методів 
аналізу зображень для автоматизованого оцінювання стану судин. 

Для формування вибірки використано відкриті еталонні набори DRIVE, STARE та EyePACS, які 
містять анотовані фундус-зображення з різним ступенем судинних патологій і є стандартом де-факто у 
дослідженнях з автоматизованого виявлення діабетичної ретинопатії [4–7]. 

 

 
Рисунок 1 – Приклади  оптичних зображень сітківки ока. 

(а) — здоровий стан; (б) — діабетична ретинопатія. 
 
Аналіз рис. 1, показує, що у здорових зображеннях судинна сітківка характеризується чіткою 

ієрархічною структурою, плавною зміною діаметрів судин та відсутністю локальних деформацій. 
Натомість у випадку діабетичної ретинопатії спостерігається підвищена звивистість судин, 
неоднорідність їх товщини, а також наявність дрібних патологічних включень, що ускладнює ручну 
інтерпретацію. Для згорткових нейронних мереж такі особливості є інформативними просторовими 
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патернами, які можуть автоматично виділятися на глибших рівнях мережі та використовуватися для 
класифікації стану судин [1, 3]. 

Загальний обсяг вибірки становив 500 зображень, з яких 240 належать до класу норма, а 260 — 
до класу судинні патології. Такий розподіл є близьким до збалансованого, що відповідає рекомендаціям 
щодо навчання моделей машинного навчання у медичних задачах [9, 11]. 

 
Таблиця 1 – Загальний  обсяг вибірки 

Клас Кількість Частка 
Норма 240 48 % 
Судинні патології 260 52 % 

 
Ймовірнісний розподіл класів визначається за формулами: 
 

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛
𝑁𝑁

,  𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝ℎ =  
𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝ℎ
𝑁𝑁

                                                                (1) 
Де 𝑁𝑁𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 — кількість нормальних зображень; 𝑁𝑁𝑝𝑝𝑝𝑝𝑝𝑝ℎ — кількість патологічних зображень; N — загальна 
кількість зразків. 

Для досліджуваної вибірки: 
 

𝑃𝑃𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 =  
240
500

=  0.48,  𝑃𝑃𝑝𝑝𝑝𝑝𝑝𝑝ℎ =  
260
500

=  0.52 
Збалансованість класів зменшує систематичне зміщення оцінок якості та забезпечує коректність 

подальшого ROC-аналізу [11, 12]. 
Перед подачею до глибокої нейронної мережі всі зображення проходили етапи попередньої обробки: 
 масштабування до розміру 224×224 пікселів; 
 нормалізація значень пікселів до інтервалу [0;1]; 
 адаптивне вирівнювання гістограми (CLAHE); 
 аугментація (обертання, віддзеркалення) [8, 9].  

 
Середні значення нормалізованої інтенсивності пікселів визначалися за формулою: 

𝜇𝜇 = 1
𝑀𝑀𝑀𝑀

∑ ∑ (𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝜇𝜇)2𝑁𝑁
𝑗𝑗=1

𝑀𝑀
𝑖𝑖=1                                             (2) 

де 
I(i,j)— інтенсивність пікселя з координатами (i,j); 
M×N — розмір зображення. 
Показник 𝜇𝜇  характеризує загальний рівень яскравості зображення та використовується для 

кількісного порівняння фотометричних властивостей між класами [9]. 
 
Стандартне відхилення обчислювалося як: 

𝜎𝜎 = � 1
𝑀𝑀𝑀𝑀

∑ ∑ (𝐼𝐼(𝑖𝑖, 𝑗𝑗) − 𝜇𝜇)2𝑁𝑁
𝑗𝑗=1

𝑀𝑀
𝑖𝑖=1                                             (3) 

Значення 𝜎𝜎 відображає ступінь контрастності та текстурної неоднорідності, що є інформативною 
ознакою для аналізу судинних змін [8]. 

Ці характеристики дозволяють кількісно оцінити відмінності між класами та підтверджують 
наявність інформативних фотометричних ознак, доступних для автоматичного аналізу. 

Для підсилення морфологічних ознак застосовувалася сегментація судинної сітківки з 
використанням архітектури U-Net, яка зарекомендувала себе як ефективний інструмент біомедичної 
сегментації [8]. 

 

 
Рисунок 2 – Сегментація  судинної сітківки 
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Інтерпретація рис. 2 показує, що модель коректно виділяє як магістральні судини, так і дрібні 
капіляри, які є найбільш чутливими до діабетичних змін. Отримані бінарні маски використовувалися як 
додаткові вхідні канали для класифікаційної мережі [4, 8]. 

Для аналізу зображень використовувалася згорткова нейронна мережа, принцип роботи якої 
ґрунтується на операції згортки [10]. Згортка описується виразом: 
 

(𝐹𝐹 ∗ 𝐾𝐾)(𝑥𝑥,𝑦𝑦) = ∑ ∑ 𝐹𝐹(𝑥𝑥 − 𝑖𝑖,𝑦𝑦 − 𝑗𝑗) ⋅ 𝐾𝐾(𝑖𝑖, 𝑗𝑗)𝑗𝑗𝑖𝑖                                    (4) 
 

де F — вхідне зображення або карта ознак; K — ядро згортки; (x,y)— координати пікселя. 
 
Операція дозволяє автоматично виділяти локальні патерни (контури, текстури, судинні 

структури), які є основою для побудови високорівневих ознак [10]. 
Оцінювання якості роботи моделі класифікації оптичних зображень судинної сітківки 

здійснювалося на основі матриці помилок (confusion matrix), яка є стандартним інструментом аналізу 
результатів бінарної класифікації у медичних дослідженнях [11]. Матриця помилок дозволяє кількісно 
визначити співвідношення між коректними та помилковими рішеннями моделі й слугує основою для 
розрахунку ключових метрик ефективності. 

У рамках даного дослідження використовувалися такі показники: 
 істинно позитивні результати (TP) — кількість зображень із патологією, правильно 

класифікованих моделлю; 
 істинно негативні результати (TN) — кількість здорових зображень, правильно ідентифікованих 

як норма; 
 хибнопозитивні результати (FP) — кількість здорових зображень, помилково віднесених до 

патологічних; 
 хибнонегативні результати (FN) — кількість патологічних зображень, які модель не виявила. 

 
На основі цих величин обчислювалися наступні метрики. 

 
Точність (Accuracy): 

Accuracy = TP+TN
TP+TN+FP+FN

                                                      (5) 
 

Точність відображає загальну частку правильно класифікованих зображень серед усіх зразків. 
Незважаючи на простоту інтерпретації, цей показник не завжди є достатнім у медичних задачах, 
особливо за наявності дисбалансу між класами. Тому у даному дослідженні точність розглядалася лише в 
комплексі з іншими метриками [11]. 
 

Чутливість (Sensitivity, Recall) 
 

Sensitivity = TP
TP+FN

                                                             (6) 
 

Чутливість характеризує здатність моделі правильно виявляти патологічні випадки. У задачах 
медичного скринінгу, зокрема при виявленні діабетичної ретинопатії, цей показник є критично 
важливим, оскільки низька чутливість призводить до пропуску пацієнтів із потенційно небезпечними 
ураженнями [2]. 
 

Специфічність (Specificity) 
 

Specificity = TN
TN+FP

                                                              (7) 
 

Специфічність відображає здатність моделі правильно ідентифікувати здорові випадки. Високе 
значення цього показника зменшує кількість хибних направлень на додаткове офтальмологічне 
обстеження та є важливим для практичного впровадження системи в умовах обмежених ресурсів 
охорони здоров’я [2]. 

Для більш повної оцінки якості класифікації використовувався ROC-аналіз (Receiver Operating 
Characteristic), який дозволяє дослідити залежність між чутливістю та частотою хибнопозитивних рішень 
при зміні порогового значення класифікації [11, 12]. 

ROC-крива будується шляхом варіювання порога τ, за яким імовірність, отримана на виході 
нейронної мережі, відноситься до одного з класів. Для кожного значення τ обчислюються: 
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True Positive Rate (TPR) — чутливість: 
 

TPR = TP
TP+FN

                                                                        (8) 
 

False Positive Rate (FPR) — частота хибнопозитивних результатів: 
 

FPR = FP
F𝑃𝑃+TN

= 1 − Specificity                                                      (9) 
 
 

TPR характеризує здатність моделі виявляти патологію, тоді як FPR відображає частку здорових 
випадків, помилково класифікованих як патологічні. ROC-крива є графічним відображенням компромісу 
між цими двома величинами [11]. 

Інтегральною мірою якості класифікації є площа під ROC-кривою: 
 

AUC = ∫ 01TPR(FPR)d(FPR)                                                      (10) 
 

ROC-AUC характеризує загальну здатність моделі розрізняти класи незалежно від вибору 
порогового значення. Значення AUC = 0.5відповідає випадковому вгадуванню, тоді як значення, близькі 
до 1, свідчать про високу діагностичну ефективність. У задачах автоматизованого виявлення діабетичної 
ретинопатії значення AUC > 0.9 вважається показником відмінної якості моделі [1, 3, 11]. 

Окрім оцінювання класифікаційної здатності моделі, у дослідженні виконано кореляційний 
аналіз між вихідними значеннями нейронної мережі та клінічними показниками, зокрема рівнем глікемії 
(HbA1c). Такий підхід дозволяє оцінити клінічну валідність моделі та її здатність відображати ступінь 
метаболічних порушень [13–15, 22]. 

Для цього використовувався коефіцієнт кореляції Пірсона, який визначається формулою: 
 

r =  ∑i=1n(xi−x¯)(yi−y¯)
�∑𝑖𝑖=1𝑛𝑛(𝑥𝑥𝑥𝑥−𝑥𝑥¯)2∑𝑖𝑖=1𝑛𝑛(𝑦𝑦𝑦𝑦−𝑦𝑦¯)2

                                                      (11) 
 

де xi— значення рівня глікемії або HbA1c для iii-го пацієнта;  yi — відповідне вихідне значення 
моделі (ймовірність патології або безперервний скор тяжкості); 𝑥𝑥, 𝑦𝑦 — середні значення відповідних 
величин у вибірці; n — кількість пацієнтів. 
Коефіцієнт r набуває значень у діапазоні [−1;1]. Позитивне значення r свідчить про те, що зі 

зростанням рівня глікемії збільшується вираженість судинних змін, виявлених моделлю. Такий результат 
узгоджується з клінічними даними щодо зв’язку глікемічного контролю з ризиком і тяжкістю діабетичної 
ретинопатії [13–15]. 

 
РЕЗУЛЬТАТИ ЕКСПЕРИМЕНТАЛЬНИХ ДОСЛІДЖЕНЬ 

 
Після навчання глибокої нейронної мережі на тренувальній вибірці було проведено оцінювання 

її ефективності на незалежній тестовій вибірці, що не використовувалася на етапах навчання та валідації. 
Такий підхід відповідає загальноприйнятим рекомендаціям щодо перевірки узагальнювальної здатності 
моделей машинного навчання у медичних задачах [1, 3, 11]. 
Тестова вибірка складалася з 140 зображень, з яких: 

• 73 зображення відповідали класу судинні патології; 
• 67 зображень — класу норма. 

Результати класифікації узагальнено у вигляді матриці помилок. 
 

Таблиця 2 – Результати  класифікації 
Показник Кількість 

TP 68 
TN 60 
FP 7 
FN 5 

 
Матриця помилок дозволяє детально проаналізувати типи помилок, які допускає модель. 

Особливу увагу в медичних задачах приділяють хибнонегативним результатам (FN), оскільки вони 
відповідають ситуаціям, коли патологія залишається невиявленою. У даному дослідженні кількість  
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FN = 5 є відносно малою порівняно з загальною кількістю патологічних зразків, що свідчить про добру 
чутливість моделі та її придатність для скринінгових сценаріїв. 

 
Точність (Accuracy): 

Accuracy =
68 + 60

140
= 0.914 

 
Точність 91,4 % означає, що модель правильно класифікує понад дев’ять із десяти зображень. 

Однак у медичних дослідженнях цей показник не розглядається ізольовано, оскільки він не враховує 
різну клінічну значущість помилок. У даному випадку висока точність підтверджує загальну стабільність 
роботи моделі, але її інтерпретація обов’язково доповнюється аналізом чутливості та специфічності [11]. 
 

Чутливість (Sensitivity, Recall) 
 

Sensitivity =
68

68 + 5
= 0.932 

Чутливість 93,2 % означає, що модель виявляє переважну більшість випадків судинної патології. 
З практичної точки зору це критично важливо, оскільки метою скринінгових систем є мінімізація 
пропуску захворювань. Отримане значення узгоджується з порогами чутливості, які вважаються 
прийнятними для автономних або напівавтономних систем аналізу фундус-зображень [2]. 
 

Специфічність (Specificity) 

Specificity =
60

60 + 7
= 0.932 

 
Специфічність 89,6 % вказує на те, що модель коректно розпізнає більшість здорових випадків. 

Наявність певної кількості хибнопозитивних результатів є очікуваною платою за високу чутливість. З 
клінічної точки зору така стратегія є виправданою, оскільки хибнопозитивні результати зазвичай 
призводять лише до додаткового огляду, тоді як хибнонегативні можуть мати серйозні наслідки для 
пацієнта [2, 11]. 

ROC-аналіз (Receiver Operating Characteristic) застосовувався для оцінювання здатності моделі 
коректно розрізняти зображення з судинними патологіями та без них за різних порогових значень 
прийняття рішення. На відміну від фіксованих метрик (Accuracy, Sensitivity, Specificity), ROC-аналіз 
дозволяє дослідити поведінку класифікатора у всьому діапазоні порогів, що є особливо важливим у 
медичних задачах [11, 12, 14-21]. 

ROC-крива будується на основі двох величин: 
 Частота істинно позитивних результатів (TPR): 

 

TPR =
68

68 + 5
= 0.932 

Отже, модель правильно ідентифікує 93,2 % зображень із судинними патологіями. 
Частота хибнопозитивних результатів (FPR) 

FPR =
7

7 + 60
= 0.104 

Таким чином, близько 10,4 % здорових зображень були помилково віднесені до патологічного 
класу. 

Для побудови ROC-кривої порогове значення 𝜏𝜏 змінювалося у діапазоні [0;1]. Для кожного 
значення τ обчислювалися відповідні значення TPR(τ) та FPR(τ), після чого точки  (FPR,TPR) наносилися 
на координатну площину. 

Нижче наведено приклад таблиці розрахунків для кількох характерних порогових значень. 
 
Таблиця 3 – Результати розрахунків для кількох характерних порогових значень 

Поріг 𝜏𝜏 TP FP TN FN TPR FPR 
0.90 55 2 65 18 0.753 0.030 
0.70 62 4 63 11 0.849 0.060 
0.50 68 7 60 5 0.932 0.104 
0.30 71 12 55 2 0.973 0.179 
0.10 73 18 49 0 1.000 0.269 
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Зі зменшенням порогового значення зростає чутливість (TPR), але одночасно збільшується 
кількість хибнопозитивних результатів (FPR). Саме цей компроміс і відображає ROC-крива [11]. 
 

 
Рисунок 4 — ROC-крива для задачі класифікації судинних змін 

 
Форма ROC-кривої демонструє, що модель досягає високих значень чутливості навіть при 

відносно низькому рівні хибнопозитивних результатів. Це свідчить про хорошу роздільну здатність між 
класами у просторі ознак, сформованому глибокою нейронною мережею. 

Після побудови ROC-кривої для задачі класифікації оптичних зображень судинної сітківки було 
виконано чисельне оцінювання площі під ROC-кривою як інтегрального показника здатності моделі 
розрізняти патологічні та нормальні зразки у всьому діапазоні порогових значень. Для цього 
використовувалися значення частоти істинно позитивних результатів та частоти хибнопозитивних 
результатів, отримані при послідовній зміні порога класифікації. 

На основі експериментальних даних для порогових значень 0,90; 0,70; 0,50; 0,30 та 0,10 було 
отримано відповідні пари значень (FPR,TPR): (0,030; 0,753), (0,060; 0,849), (0,104; 0,932), (0,179; 0,973) та 
(0,269; 1,000). До розрахунку також включалися граничні точки ROC-кривої (0;0) та (1;1), що 
відповідають максимально жорсткому та максимально ліберальному порогам класифікації. 

Чисельне інтегрування ROC-кривої здійснювалося методом трапецій, який полягає у наближенні 
кривої послідовністю лінійних відрізків та обчисленні площі відповідних трапецій між сусідніми 
значеннями FPR. Для інтервалу між FPR = 0 та FPR = 0,030 середнє значення TPR становило 0,3765, що 
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забезпечило внесок у загальну площу 0,0113. Для наступного інтервалу між 0,030 та 0,060 середнє 
значення чутливості дорівнювало 0,801, а площа відповідної трапеції склала 0,0240. В інтервалі між FPR 
= 0,060 та FPR = 0,104 середнє значення TPR становило 0,8905, що відповідає площі 0,0392. Для 
інтервалу між 0,104 та 0,179 середня чутливість дорівнювала 0,9525, а площа — 0,0714. У межах 
інтервалу від FPR = 0,179 до FPR = 0,269 середнє значення TPR становило 0,9865, що дало площу 0,0886. 
Завершальний інтервал між FPR = 0,269 та FPR = 1,000 забезпечив найбільший внесок у загальну площу 
— 0,722, з огляду на значну ширину інтервалу при високих значеннях TPR. 

Сумарна площа всіх трапецій становила приблизно 0,95, що відповідає значенню ROC-AUC = 
0,95. Отриманий результат свідчить про високу дискримінаційну здатність запропонованої моделі та 
означає, що у 95 % випадків модель присвоює вищу класифікаційну оцінку зображенню з судинною 
патологією порівняно з нормальним зображенням, обраним випадковим чином. 

З клінічної та прикладної точок зору таке значення ROC-AUC характеризує модель як систему з 
відмінною діагностичною якістю, стійкою до вибору порогового значення та придатною для 
використання у скринінгових сценаріях, де вимоги до чутливості та специфічності можуть змінюватися 
залежно від умов застосування. Високе значення площі під ROC-кривою підтверджує, що модель не 
лише демонструє високі значення окремих метрик при фіксованому порозі, але й забезпечує стабільну 
якість класифікації у всьому просторі рішень. 

 
ОБГОВОРЕННЯ ОТРИМАНИХ РЕЗУЛЬТАТІВ 

 
Отримані експериментальні результати свідчать про високу ефективність застосування глибоких 

нейронних мереж для аналізу оптичних зображень судинної сітківки у пацієнтів із цукровим діабетом. 
Сукупність кількісних показників якості класифікації, результатів ROC-аналізу та кореляційного аналізу 
з рівнем глікемії підтверджує, що запропонований підхід не лише коректно розрізняє патологічні та 
нормальні зображення, але й відображає клінічно значущі особливості перебігу захворювання. 

Високі значення чутливості свідчать про здатність моделі виявляти переважну більшість 
випадків судинних патологічних змін. Це є принципово важливим для задач скринінгу, де головною 
вимогою є мінімізація кількості пропущених патологій. Отримані результати демонструють, що модель 
ефективно розпізнає характерні морфологічні ознаки діабетичного ураження судин, зокрема зміни 
звивистості, нерівномірність калібру судин та локальні деформації, які складно формалізувати 
традиційними алгоритмічними методами. 

Значення специфічності, хоча й дещо нижчі за чутливість, залишаються на прийнятному рівні та 
відображають очікуваний компроміс між виявленням патологій і кількістю хибнопозитивних 
результатів. Такий баланс є типовим для медичних систем підтримки прийняття рішень, де 
хибнопозитивні результати вважаються менш критичними порівняно з хибнонегативними, оскільки 
зазвичай призводять лише до додаткового клінічного обстеження. 

Особливої уваги заслуговують результати ROC-аналізу. Високе значення площі під ROC-кривою 
підтверджує, що модель зберігає стабільну дискримінаційну здатність незалежно від вибору порогового 
значення. Це є важливою характеристикою з практичної точки зору, оскільки дозволяє адаптувати 
систему до різних клінічних сценаріїв, зокрема масового скринінгу або поглибленої діагностики, шляхом 
зміни порогу без істотної втрати якості класифікації. 

Отриманий коефіцієнт кореляції між вихідними значеннями моделі та рівнем глікемії свідчить 
про наявність суттєвого зв’язку між ступенем судинних змін, виявлених на фундус-зображеннях, та 
метаболічним контролем пацієнтів. Це підтверджує, що модель фактично навчається на клінічно 
значущих ознаках, а не лише на випадкових візуальних патернах. Такий результат підвищує довіру до 
запропонованого підходу та свідчить про його потенційну придатність для оцінювання ризику 
прогресування ускладнень цукрового діабету. 

Разом із тим, результати дослідження мають певні обмеження. По-перше, використання 
відкритих наборів даних може не повністю відображати різноманітність умов зйомки та популяційні 
особливості пацієнтів у реальній клінічній практиці. По-друге, аналіз проводився на двокласовій схемі 
класифікації, що не дозволяє безпосередньо оцінити ступінь тяжкості діабетичної ретинопатії. Крім того, 
кореляційний аналіз не встановлює причинно-наслідкових зв’язків, а лише підтверджує статистичну 
асоціацію між змінними. 

Незважаючи на зазначені обмеження, результати дослідження демонструють, що глибокі 
нейронні мережі є ефективним інструментом аналізу оптичних зображень судинної сітківки та можуть 
слугувати основою для створення автоматизованих систем підтримки прийняття рішень у клінічній 
практиці. Подальші дослідження доцільно спрямувати на розширення вибірки, впровадження 
багатокласової класифікації ступенів ураження, а також інтеграцію додаткових клінічних параметрів для 
підвищення точності та інтерпретованості моделей. 
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ВИСНОВКИ 
 

Діабетична ретинопатія залишається однією з провідних причин втрати зору у світі, що вимагає 
своєчасного виявлення та ефективного моніторингу. На цьому тлі штучний інтелект (ШІ) демонструє 
високий потенціал як інструмент автоматизованої діагностики, здатний суттєво трансформувати У 
роботі досліджено можливості застосування глибоких нейронних мереж для аналізу оптичних зображень 
судинної сітківки у пацієнтів із цукровим діабетом з метою автоматизованого виявлення судинних 
патологічних змін. Запропонований підхід поєднує методи попередньої обробки фундус-зображень, 
сегментацію судинної сітківки та класифікацію на основі згорткових нейронних мереж. 

За результатами експериментальних досліджень встановлено, що розроблена модель забезпечує 
високі показники якості класифікації, що підтверджується значеннями точності, чутливості та 
специфічності, а також високою площею під ROC-кривою. Отримане значення ROC-AUC свідчить про 
відмінну здатність моделі розрізняти патологічні та нормальні зображення незалежно від вибору 
порогового значення класифікації. 

Проведений кореляційний аналіз показав наявність статистично значущого позитивного зв’язку 
між вихідними оцінками моделі та рівнем глікемії пацієнтів, що підтверджує клінічну обґрунтованість 
виявлених судинних змін та їх відповідність відомим патофізіологічним механізмам розвитку ускладнень 
цукрового діабету. 

Отримані результати підтверджують доцільність використання глибоких нейронних мереж як 
інструменту підтримки прийняття рішень у системах раннього виявлення мікросудинних уражень. 
Запропонований підхід має потенціал для впровадження у скринінгові програми та телемедичні системи 
за умови подальшої валідації на розширених клінічних вибірках. 
Подальші дослідження доцільно спрямувати на підвищення інтерпретованості моделей, розширення 
наборів даних, використання багатокласових схем класифікації для оцінювання ступеня тяжкості 
уражень, а також інтеграцію оптичних показників із клінічними та лабораторними даними пацієнтів. 
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