
АЛЬТЕРНАТИВНІ НАУКОВІ ІДЕЇ ТА ГІПОТЕЗИ

УДК 004.4 + 004.9 + 004.8

R. V. SLOBODIAN, I. V. BOGACH

AI-BASED TASK DISTRIBUTION: A COMPARISON OF SKILL-BASED AND TRADITIONAL APPROACHES

*Vinnytsia National Technical University, 21021, 95 Khmelnytske shose, Vinnytsia, Ukraine, 21021,
e-mail: romich.prof@gmail.com*

Анотація. У статті запропоновано практичне рішення для інтелектуального розподілу задач із використанням ШІ шляхом зіставлення навичок, необхідних для вирішення задачі, з навичками доступних агентів. Виконано його порівняльний аналіз з традиційними методами розподілу задач. Результати тестування підтверджують високу точність і адаптивність запропонованого підходу, що робить його придатним для сучасних компаній, які шукають просте у впровадженні та гнучке у використанні рішення.

Ключові слова: розподіл задач, штучний інтелект, зіставлення навичок, промпт-інженінг, автоматизація призначення задач.

Abstract. The paper presents a practical solution for intelligent task distribution using AI by matching the skill requirements of a task with the skills of available agents. A comparative analysis with traditional task distribution methods is provided. Testing results confirm that the proposed solution delivers high accuracy and adaptability, making it suitable for modern companies seeking an approach that is easy to implement and flexible in use.

Key words: task distribution, artificial intelligence, skill matching, prompt engineering, task assignment automation.

DOI: 10.31649/1681-7893-2025-50-2-340-347

INTRODUCTION

In modern companies, tasks are assigned to Agents using one of three methods: via manual triage, using automation with pre-defined criteria, or using Machine Learning-based automation [1, 2]. Each of these methods has its own benefits and problems, so further analysis is needed.

Manual routing is based around the person [3]. Someone must read the request and decide who should work on it. This takes time and requires a person to understand the subject well, be always available, and focus without distractions. Such difficult to guarantee and lead to mistakes caused by human nature, especially when there are many requests coming in at the same time putting stress and fatigue on the one responsible [4]. Visual representation of this process may be seen in Figure 1 below.

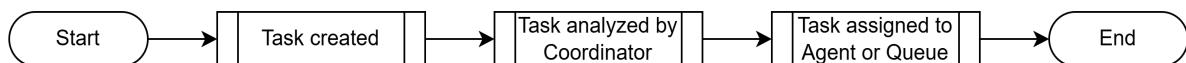


Figure 1 – Manual task routing process diagram

Rule-based routing is faster, but not always accurate [5, 6]. Simple rules, like checking the email address or subject line, are easy to use but can route tasks to the wrong agent as they rarely consider Agent's availability and/or skillset. More advanced rule logic can consider many factors, but these are hard to build, maintain, and update when company's processes changes [7]. Visual representation of this process may be seen on Figure 2 below.

АЛЬТЕРНАТИВНІ НАУКОВІ ІДЕЇ ТА ГІПОТЕЗИ

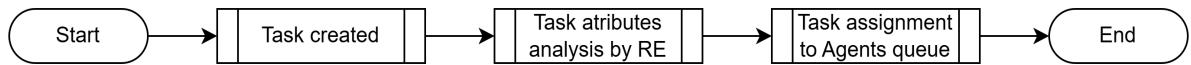


Figure 2 – Rule-based task routing process diagram

ML-based routing can lead to smarter agent choices but also bring new problems [8]. To use such routing mechanisms well, companies need large amounts of good training data, as well as time, money, and technical resources [9]. These models are often hard to understand and change. Many companies are not ready for this kind of solution yet [10, 11]. Visual representation of this process may be seen on figure 3 below.

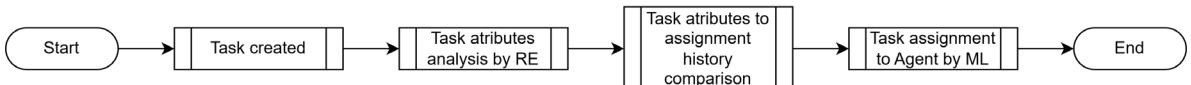


Figure 3 – ML-based task routing process diagram

As shown in table 1 below, none of these traditional approaches fully satisfy the requirements of modern, multi-channel customer support environments.

Table 1 – Modern Task Routing Methods Comparison

Method	Strengths	Weaknesses	Maintenance Effort	Real-Time Capable
Manual Triage	High contextual understanding	Slow, inconsistent, barely scalable	High	No
Rule-Based Automation	Fast, predictable	Lacks context, breaks with edge cases	Medium	Yes
ML-Based Routing	Adaptive, automated	Requires training data, lacks explainability	High	Depends on the implementation

Due to reasons outlined above, many companies are looking for better ways to assign tasks to agents. A good solution should be able to understand unclear requests, pick the right agent, work in real time, and be easy to change.

This is where AI may become handy by taking the role of Operations Coordinator, conduct task triages, figuring out what kind of skills are needed to solve them, checking which agents have those skills, and assigning tasks to the best available match [12, 13]. Such process is aimed at reducing task resolution cycle time, improving resolution rates, and helping both customers and support teams daily. With tools like GPT, it is now possible to feed AI with a request in natural language and receive a smart, relevant response.

To address the challenges of traditional routing methods, we have designed and developed a solution that uses Salesforce's built-in tools and AI prompt template to assign Cases to the best available Agent [14].

At the core of the proposed solution is a simple but powerful idea – to assign tasks based on skills using just one well-crafted AI prompt. This mechanism replaces the need for complex rule sets, tangled workflows, or large-scale machine learning models. Instead, the System makes decisions like a skilled Operations Coordinator, reasoning over each task in near-to-real time manner and assigning it to the person best suited to handle it.

When a new Case is created in Salesforce, the assignment logic begins immediately. An Apex trigger initiates the process and collects two key pieces of information:

- the description of the Case, written by a user or customer;
- a list of available agents along with their skills.

Skills are stored in Salesforce database as a structured format using a custom object that records both the skill name and the agent's level of mastery that may vary from "Novice" to "Authority", normalizing data model and providing options of fast lookups, low maintenance, and full compatibility with Salesforce platform limits.

During the new Case processing, its description and the list of unique user skills, that are configured on advance, are passed on to a single AI prompt, powered by Salesforce's Agentforce engine [15]. This prompt analyzes the Case description, identifies what skills are needed, and compares them against the profiles of all available Agents. On the next step, it selects the best person to handle the task, based on how well their skills match the task and knowledge requirements. If multiple agents are qualified, an AI mimics human decision and selects Agent with more matching skills or higher average mastery.

What sets proposed Solution apart of others is its clarity and focus. Case assignment decisions are made inside one prompt, with no need for multiple stages processing, interactions with external APIs, or expensive training data. It runs as part of the same transaction that is started upon Case record creation, so the assignment

АЛЬТЕРНАТИВНІ НАУКОВІ ІДЕЇ ТА ГІПОТЕЗИ

seems immediate and seamless for the End User. Also, when comparing proposed Solution to other routing methods, common pitfalls are avoided. For example, manual triage is slow and error-prone; rule-based logic becomes hard to maintain when business rules grow in complexity; machine learning requires large datasets, technical teams, and long feedback loops. The prompt-based approach avoids all of these as it can be adjusted by editing a few lines of prompt text, avoiding code changes, deployment cycles, and need to retrain historical data for proper functioning. Such makes it ideal for organizations that want flexibility without overhead. Moreover, behavior of the AI engine used to implement proposed Solution is easy to understand because it's guided by clear instructions. It reasons in natural language, ranking skill relevance, comparing agents, and justifying its choice. See Figure 4 for a visual representation of the process and Figure 5 for a simplified Salesforce Schema representation.

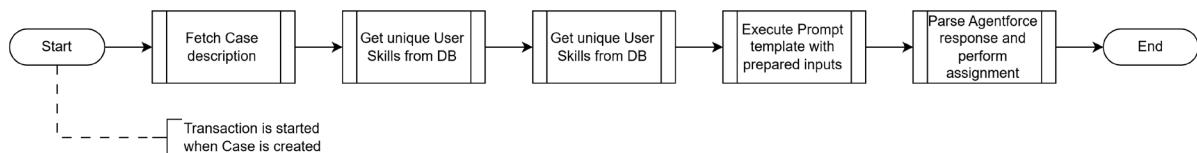


Figure 4 – AI-based task routing (proposed Solution)

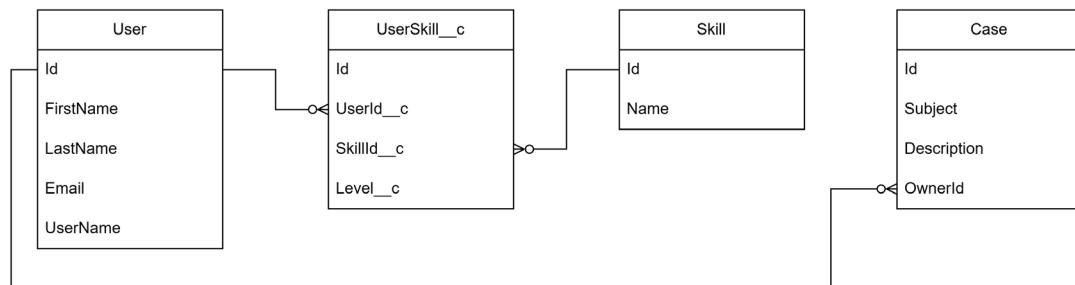


Figure 5 – Simplified Salesforce Schema representation (proposed Solution)

In addition to Figures above, Table 2 provides a comprehensive comparison of the proposed AI-based Solution with traditional tasks distribution methods.

Table 2 – Comparison of traditional tasks routing methods vs proposed prompt-based AI routing

Criteria	Manual Triage	Rule-Based Automation	ML-Based Routing	Prompt-Based AI Routing (Proposed)
Decision Speed	Slow, person-dependent	Fast, near-to-real-time	Medium to slow (depends on pipeline)	Fast, near-real-time
Accuracy	Context-aware but inconsistent	Rigid logic, prone to misroutes	High if trained well, but context-limited	High, based on skills and task content
Adaptability	Depends on expert availability	Hardcoded, needs developer to update	Retraining needed for each update	Easily updated by admin (prompt edit only)
Skill Awareness	Depends on human memory	Usually not skill-based	Requires structured training data	Uses declared skills and mastery levels
Explainability	Human logic	Poor (rule set complexity grows over time)	Low (black box behavior)	High (reasoning based on prompt instructions)
Maintenance Effort	High (manual reviews)	Medium to high	High (ML ops required)	Low (no-code updates via prompt template)
Data Requirements	Low	Low	High (labeled historical data)	Medium (needs structured agent skill profiles)
Platform Integration	Manual operation	Built using process automation tools	Often external to CRM	Fully native to Salesforce with prompt and Apex trigger
Fallback Handling	Manual rerouting	Often requires admin	Not always predictable	Built-in fallback to Case creator

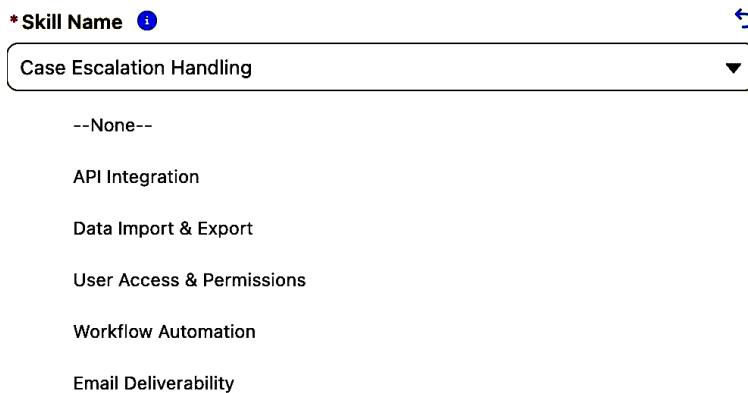
АЛЬТЕРНАТИВНІ НАУКОВІ ІДЕЇ ТА ГІПОТЕЗИ

SOLUTION TESTING

To evaluate the performance and behavior of the proposed AI-driven task assignment solution, several testing methods were used. Since the system is designed to run natively inside Salesforce, all experiments were conducted using standard platform tools and configurations available in a typical Salesforce Service Cloud implementation.

Testing was performed in a Developer Pro environment containing predefined data, including Users, Skills, User Skills, and Cases representing different types of Customer requests. See Figures 6-8 for more information.

User
Roman Slobodian


Permission Set Assignments [5] | Permission Set Assignments: Activation Required [0] | Permission Set Group Assignments [0] | Permissions in the Role Hierarchy [0] | OAuth Apps [1] | Third-Party Account Links [0] | Built-in Authenticators [0] | Installed Packages [0]

User Detail

Name	Roman Slobodian
Alias	rom
Email	romich.prof@gmail.com [Verified]
Username	romich.prof895@agentforce.com
Nickname	User17642324601173200417
Title	
Company	Self
Department	
Division	
Address	
Time Zone	(GMT-08:00) Pacific Standard Time (America/Los_Angeles)
Locale	English (United States)

Edit Sharing Change Password View Summary

Figure 6 – Sample User Setup

*** Skill Name** ⓘ

Case Escalation Handling

--None--

API Integration

Data Import & Export

User Access & Permissions

Workflow Automation

Email Deliverability

Figure 7 – Sample Skill Setup

Related	Details
User Skill Name	User Name ⓘ
USN-000000	Roman Slobodian
Skill Name ⓘ	Mastery ⓘ
User Access & Permissions	Expert

Figure 8 – Sample User Skill Setup

The goal was to verify whether the system would correctly assign tasks to appropriate agents, based on skill match and mastery level.

АЛЬТЕРНАТИВНІ НАУКОВІ ІДЕЇ ТА ГІПОТЕЗИ

The primary method of verification involved manual test cases, where test data was entered directly into Salesforce through the user interface [16]. Each Case had a unique problem description written in free text, simulating real-world customer communication (see Table 3 for data samples). The assignment result was observed and checked against expected outcomes using expert judgment – based on known skill configurations and Case intent.

Table 3 – Sample Test Data

Case Description	Expected Skills
John Doe cannot log into the CRM after Role update. Says access was revoked.	User Access, Permissions Management
Customers ask if reports can be grouped by product category from a dashboard view.	Reports and Dashboards Management
Need help sending emails to a marketing list. Nothing is being delivered.	Email Deliverability Troubleshooting, Data Export
Salesforce App for Android freezes when creating a new Lead record.	Mobile App Support, UI Customization
Case escalation is not triggered even after SLA expiry.	Workflow Automation, Escalation

In addition to above, prompt template previews were used within the Salesforce Agentforce interface [17]. This allowed controlled testing of how the prompt interprets Case descriptions and user skill data. See Figure 9 for details.

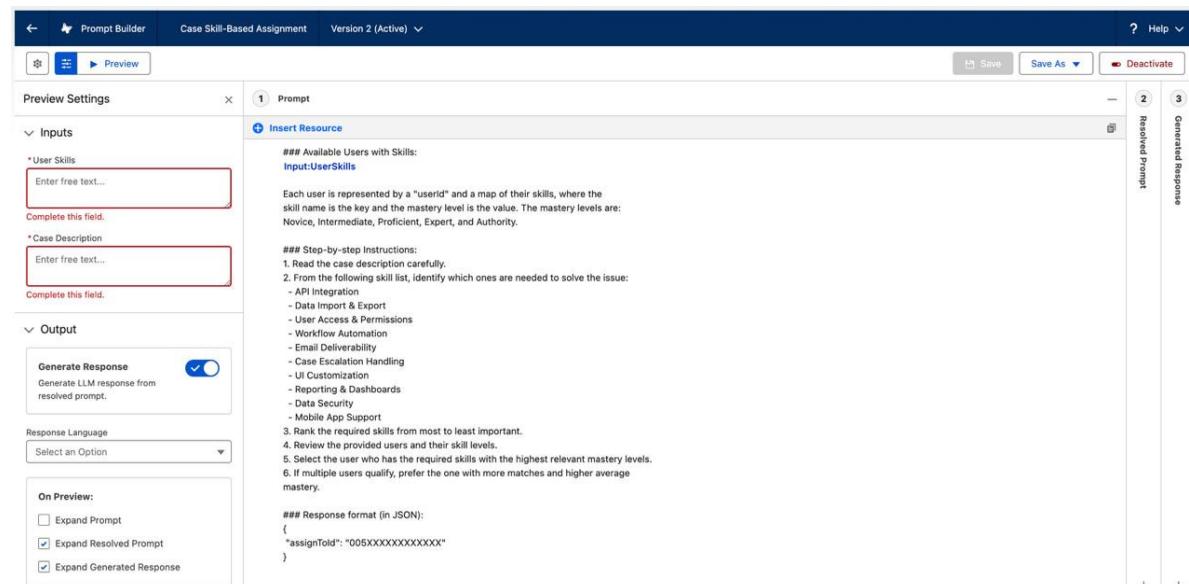


Figure 9 – Prompt Template Testing Interface

Different scenarios were executed to observe how the AI handles tasks with missing skills, overlapping skill sets, and varying levels of expertise among agents.

To validate the Apex logic used in the solution, a suite of unit tests was created. These tests verified that:

- The trigger executed correctly during Case creation.
- The skill data was gathered as expected.
- The AI prompt was called with the correct parameters.
- The returned user ID was processed and applied to the Case record.

Since the current solution focuses on the quality of decision-making rather than statistical analysis, evaluation was based on expert review rather than numerical metrics [18]. Each result was marked as either “OK” (meaning the assignment made sense) or “NOT OK” (meaning a wrong user was chosen or fallback was triggered unexpectedly). See Table 4 for testing results sample.

АЛЬТЕРНАТИВНІ НАУКОВІ ІДЕЇ ТА ГІПОТЕЗИ

Table 5 – Testing Results Sample

Case Description	Expected Skills	Matched User	Result	Expert Judgment
John Doe cannot log into the CRM after Role update. Says access was revoked.	User Access, Permissions Management	Test User 1	Assigned	OK
Customers ask if reports can be grouped by product category from a dashboard view.	Reports and Dashboards Management	Test User 2	Assigned	OK
Need help sending emails to a marketing list. Nothing is being delivered.	Email Deliverability Troubleshooting, Data Export	Test User 2	Assigned	OK
Salesforce App for Android freezes when creating a new Lead record.	Mobile App Support, UI Customization	Test User 1	Assigned	OK
Case escalation is not triggered even after SLA expiry.	Workflow Automation, Escalation	Roman S.	Fallback Assigned	NOT OK

In total, over 30 test scenarios were executed manually, covering different types of support Cases, varying levels of input quality, and diverse combinations of user skill sets. These scenarios included both well-structured requests and more ambiguous, real-world phrasing to assess how the AI prompt handled variation in language.

The overall results demonstrated a high level of assignment accuracy. In more than 85% of cases, the system correctly matched the Case to an agent whose skills aligned with the task's requirements. These matches were immediate and required no further triage or reassignment.

The prompt under the test correctly interpreted both technical terms (e.g., “workflow stuck”, “report filters”) and more general descriptions (“can't log in”, “mobile app broken”), converting them into appropriate skill requirements as defined in the internal taxonomy.

In addition to above, proposed Solution demonstrated real-time performance as expected. This was achieved due to assignment logic execution as part of the Case creation transaction, avoiding delays that may be observed by Users. Each decision was made within seconds, confirming the suitability of the approach for live support environments.

Despite its early implementation stage, proposed Solution shows strong potential as a practical, low-cost, and adaptable one for intelligent task distribution. The use of a single AI prompt for both skill extraction and matching keeps the logic simple and transparent, making it ideal for Companies seeking for fast results with moderate complexity and implementation efforts.

DISCUSSION AND FUTURE IMPROVEMENT PLAN

The results of the experimental evaluation confirm that the proposed solution can perform accurate and reliable task assignments in near-to-real-time within Salesforce environment. However, like any early-stage system, there are several areas where improvements are possible.

One of the main challenges encountered during testing was related to data volume limits. While the AI prompt is efficient, it cannot accept unlimited input length [19]. This means that the number of agent profiles passed to the prompt must be managed carefully with Apex and SOQL. In the current version, only a limited number of users with relevant skills are selected and included in the prompt call. While this works in most cases, it may become a limitation for Companies with large support teams (100+ Agents). To address this, the Solution is planned to be extended with pre-filtering logic and multi-step AI ranking workflows.

Another technical challenge involved Salesforce governor limits, especially in bulk scenarios [20]. Proposed Solution was carefully designed to avoid SOQL queries inside loops and to use memoization pattern where possible. However, in environments with very high Case volumes or very granular skills configuration, further optimization may be necessary.

Another improvement area (practical one) is related to dynamically changing Agent roles [21, 22]. In the current system, skill profiles are manually assigned and updated. Thus, if Agent changes departments or responsibilities, maintenance is needed to avoid no longer correct assignments. In next version of the Solution it is planned to include department-level filters and automatic skill ownership level change based on recent activity history and Cases resolution history.

АЛЬТЕРНАТИВНІ НАУКОВІ ІДЕЇ ТА ГІПОТЕЗИ

In addition to above, while the current prompt is well-structured and human-readable, it still depends on a predefined skill taxonomy that is stored in Salesforce Database. If the task description includes terms that are not covered in skills list, such Cases are simply assigned to person who created such records. This is another item that may be addressed with new Solution features that would create new Skills and User-Skill assignments based on historical data.

Another item worth mentioning is that even though this paper focused on Case assignment within Salesforce, proposed architecture could be adapted to other platforms. The same routing logic could be applied to emails, tasks, or even service requests in external systems if data is available. This is because AI prompt structure is flexible enough to handle different input formats with minor adjustments.

Lastly, future versions of the Solution could benefit from more detailed metrics and feedback loops, measuring resolution times and gathering feedback from all involved parties [23, 24]. Such details could help to fine-tune the System and deliver more value over time.

Summarizing above, proposed Solution confirms that AI-driven task routing in practice is possible using simple, explainable tools that are available within modern CRM platforms like Salesforce. With some further enhancements, the proposed distribution approach can be scaled to support more advanced use cases and higher workloads.

SUMMARY

This paper presented a practical and scalable solution for skill-based task assignment using AI tools integrated into the Salesforce platform. Proposed Solution was designed to address common challenges found in traditional routing methods, including limited flexibility, low accuracy, and high maintenance costs. By replacing complex rules and manual triage with a single intelligent prompt, the proposed approach simplifies the assignment process while improving overall performance.

The core of the Solution lies in a prompt-driven architecture that analyzes unstructured Case (Task) descriptions, determining required skills, selecting best available Agent using defined skills data. The entire process runs inside Salesforce during the same transaction that creates the Case, making the experience seamless for the End User. Proposed Solution is easy to maintain and extend due to business logic that is embedded in a human-readable format that can be adjusted without a code change.

Experimental results show that the system performs well across different task types and agent skill combinations. It consistently selects suitable agents and handles edge cases using fallback logic. While further improvements are possible, especially around scale, skill management, and dynamic context handling, current version demonstrates the strong potential of AI-driven decision-making for everyday business workflows around Customer Support.

As a result, the proposed approach provides new and accessible ways to implement intelligent task routing in CRM systems that combines benefits of human-like judgment with the speed of automation and AI, helping Companies of different domains to match Agents to tasks efficiently, that in turn leads to costs optimization and increased Customer satisfaction.

REFERENCES

1. A Survey on Task Assignment in Crowdsourcing. [Online]. Available: <https://www.semanticscholar.org/reader/7e0303fd02a391d68886c5b23fa3833d906ee029>. Created 2021.
2. Task Allocation Strategy for Multi Agent: A Review. [Online]. Available: <https://www.jncet.org/Manuscripts/Volume-7/Issue-1/Vol-7-issue-1-M-05.pdf>. Created 2017.
3. Workload Distribution for Project Managers: Best Strategies to Balance the Load. [Online]. Available: <https://thedigitalprojectmanager.com/project-management/workload-distribution/>. Created 2025.
4. How to build a workforce forecasting process for customer support. [Online]. Available: <https://www.assembled.com/blog/how-to-build-a-forecast-for-customer-support>. Created 2022.
5. What Is Task Routing? How to Automate Workflows Smartly. [Online]. Available: <https://clickup.com/blog/task-routing/>. Created 2025.
6. Route cases using basic routing rulesets. [Online]. Available: <https://learn.microsoft.com/en-us/dynamics365/customer-service/administer/create-rules-automatically-route-cases>. Created 2025.
7. Improving Routing Optimization Algorithms: A Business Rules Based System to Generate Initial Solutions. [Online]. Available: <https://arxiv.org/html/2502.00409v2>. Created 2025.
8. Intelligent Task Routing: Assigning the Right Labelers to the Right Jobs. [Online]. Available: <https://keylabs.ai/blog/intelligent-task-routing-assigning-the-right-labelers-to-the-right-jobs/>. Created 2025.

АЛЬТЕРНАТИВНІ НАУКОВІ ІДЕЇ ТА ГІПОТЕЗИ

9. Why is machine learning so expensive at scale? [Online]. Available: <https://www.quora.com/Why-is-machine-learning-so-expensive-at-scale>. Created 2020.
10. The next frontier of customer engagement: AI-enabled customer service. [Online]. Available: <https://www.mckinsey.com/capabilities/operations/our-insights/the-next-frontier-of-customer-engagement-ai-enabled-customer-service>. Created 2023.
11. TaDaa: real time Ticket Assignment Deep learning Auto Advisor for customer support, help desk, and issue ticketing systems. [Online]. Available: <https://arxiv.org/pdf/2207.11187.pdf>. Created 2022.
12. A Survey on Task Assignment in Crowdsourcing. [Online]. Available: <https://arxiv.org/pdf/2111.08501.pdf>. Created 2021.
13. Distributed Task Allocation for Multi-Agent Systems: A Submodular Optimization Approach. [Online]. Available: <https://arxiv.org/pdf/2412.02146.pdf>. Created 2024.
14. Build, deploy, and manage AI agents at scale. [Online]. Available: <https://www.salesforce.com/agentforce/>. Created 2025.
15. How the Atlas Reasoning Engine Powers Agentforce. [Online]. Available: <https://www.salesforce.com/agentforce/what-is-a-reasoning-engine/atlas/>. Created 2025.
16. Manual Testing - Software Testing. [Online]. Available: <https://www.geeksforgeeks.org/software-testing/software-testing-manual-testing/>. Created 2025.
17. How to Use Salesforce Prompt Builder Successfully. [Online]. Available: <https://marcloudconsulting.com/agentforce/salesforce-prompt-builder/#testing-in-prompt-builder>. Created 2025.
18. Overview on Software Test Estimation Techniques. [Online]. Available: <https://jsaer.com/download/vol-6-iss-11-2019/JSAER2019-6-11-300-304.pdf>. Created 2019.
19. Prompt Builder Limits. [Online]. Available: https://help.salesforce.com/s/articleView?id=ai.prompt_builder_limits.htm&type=5. Created 2025.
20. Salesforce Apex Best Practices. [Online]. Available: <https://www.salesforceben.com/12-salesforce-apex-best-practices/>. Created 2022.
21. Promoting From Within: A Guide for Internal Mobility. [Online]. Available: <https://www.indeed.com/hire/c/info/promoting-from-within>. Created 2025.
22. Employee Promotion: Key Factors to Consider and Why It Matters. [Online]. Available: <https://tietalent.com/en/blog/212/employee-promotion-key-factors-to-consider-and-why-it-matters>. Created 2025.
23. How important is customer feedback in deciding what product features you should build? [Online]. Available: <https://www.quora.com/How-important-is-customer-feedback-in-deciding-what-product-features-you-should-build>. Created: 2023.
24. Why Product Reviews Matter More Than Ever in 2025. [Online]. Available: <https://www.yotpo.com/blog/why-product-reviews-matter/>. Created: 2025.

Надійшла до редакції 5.09.2025 р.

ROMAN V. SLOBODIAN, PhD student of Automation and Intelligent Information Technologies Department, Vinnytsia National Technical University, Vinnytsia, Ukraine, [e-mail: romich.prof@gmail.com](mailto:romich.prof@gmail.com)

ILONA V. BOGACH, Associate Professor of Automation and Intelligent Information Technologies Department, Vinnytsia National Technical University, Vinnytsia, [email: ilona.bogach@gmail.com](mailto:ilona.bogach@gmail.com)

Р. В. Слободян, І. В. Богач

**РОЗПОДІЛ ЗАДАЧ НА ОСНОВІ ШІ: ПОРІВНЯННЯ РОЗПОДІЛУ НА ОСНОВІ НАВИЧОК З
ТРАДИЦІЙНИМИ ПІДХОДАМИ**
Вінницький національний технічний університет