Метод побудови інтелектуальної системи рекомендацій для професійної орієнтації

Автор(и)

  • Амір Хассан Жабер Вінницький національний технічний університет

DOI:

https://doi.org/10.31649/1681-7893-2023-46-2-22-36

Ключові слова:

інтелектуальні інформаційні системи, професійна орієнтація, машинне навчання, рекомендаційні системи, штучний інтелект, алгоритми машинного навчання, алгоритм к-сусідів

Анотація

Стаття містить результати розробки методу побудови інтелектуальної системи рекомендацій  для профорієнтації. Запропонований метод включає в себе  алгоритми використання засобів машинного навчання, елементів штучного інтелекту, процедур класифікації та формування рекомендацій.  Основою побудови інтелектуальної системи рекомендацій є  визначення методів формування вхідних даних на основі результатів тестування, консультування, аналізу  ринку праці, потреб різних цільових аудиторій.  Аналіз відомих інтелектуальних інформаційних систем, використання штучного інтелекту, результати досліджень алгоритмів машинного навчання та к-сусів дозволили сформувати авторський метод побудови інтелектуальної системи для професійної орієнтації.

Посилання

E. I. Arroyo, T. V. Tendeloo, and K. Verbert, "Towards personalized and adaptive learning experiences with learning analytics," British Journal of Educational Technology, vol. 50, no. 6, pp. 2918-2935, 2019. [Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1111/bjet.12793

J. Jiao and Y. Zhao, "The impact of artificial intelligence on the education industry," Journal of Open Innovation: Technology, Market, and Complexity, vol. 7, no. 1, pp. 1-17, 2021. [Online]. Available: https://www.mdpi.com/2199-8531/7/1/1

S. Dolhopolov, T. Honcharenko, S. A. Dolhopolova, O. Riabchun, M. Delembovskyi, and O. Omelianenko, "Use of Artificial Intelligence Systems for Determining the Career Guidance of Future University Student," in Proc. 2022 IEEE Second International Conference on System Theory, Control and Computing (ICSTCC), pp. 1-6, Apr. 2022, doi: 10.1109/SIST54437.2022.9945752.

D. Sbarra, "New Ideas on Intellectual Ability, Interests, Sex Differences, and Achievement: Three ‘Integrative’ Commentaries on Four Target Articles," Perspectives on Psychological Science, vol. 9, no. 2, pp. 211-215, Mar. 2014. DOI: 10.1177/1745691614523137.

M. Hastin, N. Naqiyah, and E. Darminto, "Guidance and Counseling Services to Develop Student Career Maturity," Int. J. of Research in Educational and Learning Studies, vol. 3, no. 6, pp. 1-7, Nov. 2022, doi: 10.46245/ijorer.v3i6.261.

Xavier Jayaraj Siddarth Ashok, Ee-Peng Lim, and Philips Kokoh Prasetyo, "JobSense: A Data-Driven Career Knowledge Exploration Framework and System," in Proc. IEEE Int. Conf. Data Mining Workshops (ICDMW), pp. 1-8, Nov. 2018. doi: 10.1109/ICDMW.2018.00200.

Z. Makola, P. Saliwe, I. Dube, R. Tabane, and A. V. Mudau, "High school learners views on benefits derived from attending career talks: Need for sound career guidance," Transform. in Higher Educ., vol. 17, no. 1, Art. no. 1082, Sep. 2021. [Online]. Available: https://dx.doi.org/10.4102/td.v17i1.1082

B. Okay-Somerville, "Career guidance on online platforms in the Covid-19 context. Interview with Hannah Courtney Bennett, Chartered Psychologist and Career Coach," EWOP in Practice, vol. 2021, no. 10, Oct. 2021. DOI: 10.21825/ewopinpractice.87149. [Accessed: Nov. 1, 2023]. PDF.

H. Donelan, "Social media for professional development and networking opportunities in academia," Journal of Further and Higher Education, vol. 40, no. 5, pp. 706-729, Sep. 2016. [Online]. Available: http://oro.open.ac.uk/42255/1/Donelan.pdf. [Accessed: Nov. 1, 2023]. DOI: 10.1080/0309877X.2015.1014321.

M. Poliakov, D. Mezzane, S. Terenchuk, Y. Riabchun, P. Rusnak, and S. Biloshchytska, "Gamefication of Youth's Career Guidance Self-Identification," in Proc. IEEE 7th International Symposium on Systems and Information Technologies (SIST), 2022, doi: 10.1109/SIST54437.2022.9945751.

A. Auerbach and Y. Wolinsky-Nahmias, "Evaluating Alternative Designs of Internship Programs," 2020 APSA Teaching and Learning Conference Paper, Jan. 2020. DOI: 10.33774/apsa-2020-cwgl6.

J. Bessen, "AI and Jobs: The Role of Demand," National Bureau of Economic Research, Working Paper No. 24235, Cambridge, MA, January 2018. [Online]. Available: http://www.nber.org/papers/w24235

M. J. Pazzani and D. Billsus, "Content-based recommendation systems," in The Adaptive Web, P. Brusilovsky, A. Kobsa, and W. Nejdl, Eds. Berlin, Heidelberg: Springer, 2007, pp. 325-341. DOI: 10.1007/978-3-540-72079-9_10.

S. Wassan, "How Artificial Intelligence Transforms the Experience of Employees," TURCOMAT, vol. 12, no. 10, Art. no. 5603, May 2021. [Online]. Available: https://dx.doi.org/10.17762/TURCOMAT.V12I10.5603.

S. Zhang, E. Gunnell, M. Chang, and Y. Sun, "An Intellectual Approach to Design Personal Study Plan via Machine Learning," in Computer Science & Information Technology (CS & IT), vol. 10, no. 18, Dec. 2020, doi: 10.5121/csit.2020.101804.

A. B. Arrieta et al., "Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI," Information Fusion, vol. 58, pp. 82-115, Jun. 2020, doi: 10.1016/j.inffus.2019.12.012.

C. J. Kelly, A. Karthikesalingam, M. Suleyman, G. Corrado, and D. King, "Key challenges for delivering clinical impact with artificial intelligence," BMC Medicine, vol. 17, Article no. 195, 2019. [Online]. Available: https://doi.org/10.1186/s12916-019-1426-2

A. A. Sabale and R. Subashini, "Enhancing HR Efficiency through Integration of Artificial Intelligence and Internet of Things: A Study on AI Implementation in HR Managemen," EAI Endorsed Transactions on Scalable Information Systems, vol. 23, no. 10, e4208, Oct. 2023. [Online]. Available: https://dx.doi.org/10.4108/eetsis.4208

D. Ruiz-Talavera, J. E. De la Cruz-Aguero, N. García-Palomino, R. Calderón-Espinoza, and W. J. Marín-Rodriguez, "Artificial intelligence and its impact on job opportunities among university students in North Lima," EAI Endorsed Transactions on Scalable Information Systems, vol. 10, no. 5, Sep. 2023. [Online]. Available: https://dx.doi.org/10.4108/eetsis.3841

N. Nathani and A. Singh, "Foundations of Machine Learning," 2021. [Online]. Available: https://dx.doi.org/10.2139/ssrn.3399990. [Accessed: 1, Nov. 2023].

[21] T. Hastie, R. Tibshirani, and J. Friedman, "The Elements of Statistical Learning: Data Mining, Inference, and Prediction" Springer, 2009. [Online]. Available: https://web.stanford.edu/~hastie/Papers/ESLII.pdf

[22] D. Maulud and A. M. Abdulazeez, “A Review on Linear Regression Comprehensive in Machine Learning”, JASTT, vol. 1, no. 4, pp. 140-147, Dec. 2020. [Online]. Available: https://doi.org/10.38094/jastt1457 [Accessed: 12.11.2023].

Stanford University, "CS229: Machine Learning Course Notes - Logistic Regression," [Online]. Available: https://see.stanford.edu/materials/aimlcs229/cs229-notes1.pdf

K. Balaskas, G. Zervakis, K. Siozios, M. B. Tahoori and J. Henkel "Approximate Decision Trees For Machine Learning Classification on Tiny Printed Circuits," 15-Mar-2022. [Online]. Available: https://arxiv.org/pdf/2203.08011 [Accessed: 13.11.2023].

S. Shamshirband, A. Mosavi, T. Rabczuk, N. Nabipour and K. Chau "Prediction of significant wave height; comparison between nested grid numerical model, and machine learning models of artificial neural networks, extreme learning and support vector machines," 2020, VOL. 14, NO. 1, 805–817 [Online]. Available: https://doi.org/10.1080/19942060.2020.1773932. [Accessed: 13.11.2023].

A. Liaw and M. Wiener, "Classification and Regression by RandomForest," R News, vol. 2, no. 3, pp. 18-22, 2002. ISSN 1609-3631. Available: https://cogns.northwestern.edu/cbmg/LiawAndWiener2002.pdf

A. Natekin and A. Knoll, "Gradient Boosting Machines: A Tutorial," Frontiers in Neurorobotics, vol. 7, no. 21, Dec. 2013. doi: 10.3389/fnbot.2013.00021.

J. MacQueen, "Some methods for classification and analysis of multivariate observations," in Proc. of the fifth Berkeley symposium on mathematical statistics and probability, vol. 1, no. 14, 1967, pp. 281-297. doi: MR0214227. Available: Project Euclid.

H. A. Wafa, R. Aminuddin, S. Ibrahim, N. N. A. Mangshor, and N. I. F. A. Wahab, "A Data Visualization Framework during Pandemic using the Density-Based Spatial Clustering with Noise (DBSCAN) Machine Learning Model," in Proc. ICSET, 2021, pp. 1-6, doi: 10.1109/ICSET53708.2021.9612563. [Online]. Available: https://ieeexplore.ieee.org/document/9612563. [Accessed: 10-Nov-2023].

P. Shulpina and V. A. Dokuchaev "PRINCIPAL COMPONENT ANALYSIS FOR MACHINE LEARNING," 2022. [Online]. Available: https://doi.org/10.36724/2664-066x-2022-8-6-18-24. [Accessed: 13.11.2023]

M. Al-Maolegi and B. Arkok, "An Improved Apriori Algorithm for Association Rules," in International Journal on Natural Language Computing (IJNLC), vol. 3, no. 1, February 2014, doi: 10.5121/ijnlc.2014.3103. [Online]. Available: https://arxiv.org/pdf/1403.3948.pdf. [Accessed: 01.11.2023].

S. Panthee, S. Rajkarnikar, and R. Begum, "Career Guidance System Using Machine Learning," Journal of Advanced College of Engineering and Management, vol. 8, no. 2, Jun. 2023. [Online]. Available: https://doi.org/10.3126/jacem.v8i2.55947

P. Lokhande, Y. Nayakwadi, M. Umardand, V. Araj, and D. Patil, "Implementation of a Computer Science Career Guidance Website that Makes Use of Machine Learning," International Journal for Research in Applied Science & Engineering Technology (IJRASET), vol. 11, no. V, May 2023. [Online]. Available: https://doi.org/10.22214/ijraset.2023.53262

##submission.downloads##

Переглядів анотації: 160

Опубліковано

2023-12-11

Як цитувати

[1]
. А. Х. Жабер, «Метод побудови інтелектуальної системи рекомендацій для професійної орієнтації», Опт-ел. інф-енерг. техн., вип. 46, вип. 2, с. 22–36, Груд 2023.

Номер

Розділ

Принципові концепції та структурування різних рівнів освіти з оптико-електронних інформаційно-енергетичних технологій

Метрики

Завантаження

Дані завантаження ще не доступні.