ANALYSIS OF EFFICIENCY OF TASK DECISION OF SHORT-TERM PROGNOSTICATION OF TOTAL ELECTRIC LOADING OF GRID WITH THE USE OF ARTIFICIAL NEURAL NETWORK OF MULTI-LAYERED PERCEPTRON

Authors

  • P. O. Chernenko The Institute of Electrodynamics of the National Academy of Sciences of Ukraine
  • O. V. Martyniuk The Institute of Electrodynamics of the National Academy of Sciences of Ukraine
  • V. O. Miroshnyk The Institute of Electrodynamics of the National Academy of Sciences of Ukraine

Keywords:

electroenergy system, short-term prognostication, artificial neural network, total electric loading

Abstract

The efficiency of the use of artificial neural network of type is in-process analysed multi-layered perceptron for the decision of task of short-term prognostication of the total electric loading of the electroenergy system of Ukraine. As a result of research the extended teaching retrievals of data for an artificial neural network are formulated, allowing designing influence on total electric loading of technological, meteorological and astronomic factors, its optimal architecture is determined. The estimation of efficiency of network is conducted by comparison of the results got with the use of identical set of basic data on the basis of ANN and NAS of Ukraine of additive mathematical modelof the total electric loading of electroenergy system is carried out in the Institute of electrodynamics.

Author Biographies

P. O. Chernenko, The Institute of Electrodynamics of the National Academy of Sciences of Ukraine

prof., senior research fellow, Department of modeling of power facilities and systems

O. V. Martyniuk, The Institute of Electrodynamics of the National Academy of Sciences of Ukraine

Ph.D., Senior Research Fellow, Department of modeling of power facilities and systems

V. O. Miroshnyk, The Institute of Electrodynamics of the National Academy of Sciences of Ukraine

PhD student, Department of modeling of power facilities and systems

References

1. Черненко П.О., Мартинюк О.В. Урахування впливу зовнішніх факторів у короткостроковому прогнозуванні електричного навантаження енергооб’єднання // Вісник Вінницького політехнічного інституту, Вінниця – 2012, № 1, с. 48-53.
2. С. Хайкин. Нейронные сети: полный курс, 2-е издание. : Пер. с англ – М.: Издательский дом «Вильямс», 2006. – 1104 с.

Downloads

Abstract views: 316

How to Cite

[1]
P. O. Chernenko, O. V. Martyniuk, and V. O. Miroshnyk, “ANALYSIS OF EFFICIENCY OF TASK DECISION OF SHORT-TERM PROGNOSTICATION OF TOTAL ELECTRIC LOADING OF GRID WITH THE USE OF ARTIFICIAL NEURAL NETWORK OF MULTI-LAYERED PERCEPTRON”, Опт-ел. інф-енерг. техн., vol. 25, no. 1, pp. 24–27, Jan. 2014.

Issue

Section

Systems Of Technical Vision And Artificial Intelligence, Image Processing And Pattern Recognition

Metrics

Downloads

Download data is not yet available.