Laser polarimetry of optically anisotropic layers with spatial-frequency filtering of object fields

Authors

  • O.V. Dubolazov Chernivtsi National University
  • M.Yu. Sakhnovsky Chernivtsi National University
  • O.V. Olar Chernivtsi National University
  • P.M. Grigorishin Bukovinian State Medical University
  • Yu.O. Ushenko Chernivtsi National University

DOI:

https://doi.org/10.31649/1681-7893-2019-37-1-11-16

Keywords:

лазерна поляриметрія, анізотропія, перетворення Фур’є, фільтрація

Abstract

This paper presents the results of computer simulation of the structure of the spatial-frequency-filtered distributions of the azimuth of polarization of the laser field, transformed by a network of well-equipped optical-anisotropic cylinders. It has been demonstrated that by using spatial-frequency filtering, either low-frequency or high-frequency components can be distinguished, which can then be transformed into the appropriate "filtered" image of various-scale two-component mineral structures of various types by inverse Fourier transform.

Author Biographies

O.V. Dubolazov, Chernivtsi National University

к. ф.-м. н., доцент кафедри оптики і видавничо-поліграфічної справи

M.Yu. Sakhnovsky, Chernivtsi National University

професор кафедри оптики і видавничо-поліграфічної справи

O.V. Olar, Chernivtsi National University

аспірант кафедри оптики і видавничо-поліграфічної справи

P.M. Grigorishin, Bukovinian State Medical University

к. м. н., доцент кафедри біомедичної фізики

Yu.O. Ushenko, Chernivtsi National University

д. ф.-м. н., професор кафедри комп’ютерних наук

References

Tuchin V. V. Handbook of coherent-domain optical methods. Biomedical diagnostics, environmental

and material science / Tuchin V. V. – Boston. : Kluwer Academic Publishers, 2004. – P. 868.

Handbook of Optical Coherence Tomography / edited by B. E. Bouma and G. J. Tearn // Polarizationsensitive

optical coherence tomography / J. F. de Boer, T. E. Milner, M. G. Ducros, S. M. Srinivas and

J. S. Nelson. – New York : Marcel Dekker Inc., 2002. – P. 237-274.

Sankaran. V. Comparison of polarized-light propagation in biological tissue and phantoms / V.

Sankaran, M. J. Everett, D. J. Maitland, J. T. Walsh // Opt. Lett. – 1999. – Vol. 24. – P. 1044-1046.

Pierce M.C. Birefringence measurements in human skin using polarization-sensitive optical coherence

tomography / M.C. Pierce, J. Strasswimmer, B. Hyle Park, B. Cense, J. F. de Boer // J. Biomed. Opt. –

– Vol. 9. – P. 287-291.

Angelsky O. V. Investigation of 2D Mueller matrix structure of biological tissues for preclinical

diagnostics of their pathological states / O. V. Angelsky, Yu. Ya. Tomka, A. G. Ushenko, Ye. G.

Ushenko, Yu. A. Ushenko // J. Phys. D: Appl. Phys. – 2005. – Vol. 38. – P. 4227-4235.

Ushenko A. G. Evolution of statistic moments of 2D-distributions of biological liquid crystal netmueller

matrix elements in the process of their birefringent structure changes. / A. G. Ushenko, I. Z. Misevich,

V. Istratiy, I. Bachyns'ka, A. P. Peresunko, O. K. Numan, T. G. Moiysuk // Advances in Optical

Technologies. – 2010. – ID 423145.

Angelsky O.V. Polarization singularities of the object field of skin surface / O.V. Angelsky, A. G.

Ushenko, Yu. A. Ushenko, Ye. G. Ushenko // J. Phys. D: Appl. Phys. – 2006. – Vol. 39. – P. 3547 -

Yermolenko S. Spectropolarimetry of cancer change of biotissues / S. Yermolenko, A. Ushenko, P.

Ivashko, F Goudail, I Gruia, C. Gavrilǎ, D. Zimnyakov, A. Mikhailova // Proceedings of SPIE. – 2009.

– Vol. 7388. – P 73881D.

Downloads

Abstract views: 280

Published

2019-11-18

How to Cite

[1]
O. Dubolazov, M. Sakhnovsky, O. Olar, P. Grigorishin, and Y. Ushenko, “Laser polarimetry of optically anisotropic layers with spatial-frequency filtering of object fields”, Опт-ел. інф-енерг. техн., vol. 37, no. 1, pp. 11–16, Nov. 2019.

Issue

Section

Biomedical Optical And Electronic Systems And Devices

Metrics

Downloads

Download data is not yet available.