Image classification using optical-digital image enhancement methods and deep learning in endoscopic examinations
DOI:
https://doi.org/10.31649/1681-7893-2025-49-1-135-146Keywords:
classification, convolutional neural networks, image recognition, endoscopy, neural networks, AIAbstract
Gastrointestinal tract (GIT) diseases remain among the most pressing challenges in modern medicine, with external environmental factors affecting human health negatively. The rapid development of artificial intelligence and computer vision is aimed at improving existing methods for disease detection through the analysis of biomedical images. This study summarizes recent scientific advances in endoscopy that integrate machine learning with both digital and opto-digital image enhancement technologies. The paper reviews sources evaluating the use of white light imaging (WLI) and various enhancement modes such as NBI, BLI, i-Scan, and FICE. A classification of endoscopic image enhancement methods is provided, along with recommendations for their application based on anatomical regions of the GIT. In addition, the study presents an overview of the use of enhanced endoscopic imaging and its combination with computer vision for increasing diagnostic parameters such as accuracy, specificity, and sensitivity based on data obtained during gastrointestinal examinations. On average, sensitivity increased by 17%, and specificity by 39% compared to results from novice endoscopists. The study also explores the trend of developing new architectural approaches for integrating opto-digital and digital methods into machine learning, as well as a comparison of diagnostic quality between AI systems and human endoscopists.
An analysis of the current state of such technologies is presented, along with prospects for the development of machine learning in automated computer-aided diagnosis (CAD) systems. Challenges related to classification accuracy degradation are identified, their causes analyzed, and recommendations for performance improvement are provided. Automated CAD systems are viewed as an effective support tool for young physicians in pathology detection, helping to reduce examination time and minimize the risk of missing critical areas that require focused attention.
References
Volosovets, O., Kryvopustov, S., Kuzmenko, A., Prokhorova, M., Chernii, O., Khomenko, V., Iemets, O., Gryshchenko, N., Kovalchuk, O., & Kupkina, A. (2024). Deterioration of health of infants during the war and COVID-19 pandemic in Ukraine. CHILD`S HEALTH, 19(6), 337–347. https://doi.org/10.22141/2224-0551.19.6.2024.1737
Poudanien, Y. E., & Kozhemiako, A. V. (2023). Optical-digital narrowband methods for registration and improvement of biomedical images during endoscopy. Optoelectronic Information-Power Technologies, 46(2), 44–54. https://doi.org/10.31649/1681-7893-2023-46-2-44-54
Miura, Y., Osawa, H., & Sugano, K. (2024). Recent Progress of Image-Enhanced Endoscopy for Upper Gastrointestinal Neoplasia and Associated Lesions. Digestive diseases (Basel, Switzerland), 42(2), 186–198. https://doi.org/10.1159/000535055
Ali, S. (2022). Where do we stand in AI for endoscopic image analysis? Deciphering gaps and future directions. Springer Science and Business Media LLC. https://doi.org/10.1038/s41746-022-00733-3
PENTAX Medical. (2017, February 16). PENTAX Medical’s i-SCAN and Optical Enhancement (OE) Technology for the GI Tract. Pentax Medical. https://blog.pentaxmedical.com/i-scan-optical-enhancement-technology-for-gi-tract
Yang, Y. J. (2023). Current status of image-enhanced endoscopy in inflammatory bowel disease. The Korean Society of Gastrointestinal Endoscopy. https://doi.org/10.5946/ce.2023.070
Kodashima, S. (2010). Novel image-enhanced endoscopy with i-scan technology. Baishideng Publishing Group Inc. https://doi.org/10.3748/wjg.v16.i9.1043
Jin, Z., Gan, T., Wang, P., Fu, Z., Zhang, C., Yan, Q., … Ye, X. (2022). Deep learning for gastroscopic images: computer-aided techniques for clinicians. Springer Science and Business Media LLC. https://doi.org/10.1186/s12938-022-00979-8
Hashimoto, R., Requa, J., Dao, T., Ninh, A., Tran, E., Mai, D., … Samarasena, J. B. (2020). Artificial intelligence using convolutional neural networks for real-time detection of early esophageal neoplasia in Barrett’s esophagus (with video). Elsevier BV. https://doi.org/10.1016/j.gie.2019.12.049
Zhang, J.-Q., Mi, J.-J., & Wang, R. (2023). Application of convolutional neural network-based endoscopic imaging in esophageal cancer or high-grade dysplasia: A systematic review and meta-analysis. Baishideng Publishing Group Inc. https://doi.org/10.4251/wjgo.v15.i11.1998
Umegaki, E., Misawa, H., Handa, O., Matsumoto, H., & Shiotani, A. (2023). Linked Color Imaging for Stomach. MDPI AG. https://doi.org/10.3390/diagnostics13030467
Okada, M., Yoshida, N., Kashida, H., Hayashi, Y., Shinozaki, S., Yoshimoto, S., … Yamamoto, H. (2023). Comparison of blue laser imaging and light‐emitting diode‐blue light imaging for the characterization of colorectal polyps using the Japan narrow‐band imaging expert team classification: The LASEREO and ELUXEO COLonoscopic study. Wiley. https://doi.org/10.1002/deo2.245
Osawa, H., Miura, Y., Takezawa, T., Ino, Y., Khurelbaatar, T., Sagara, Y., … Yamamoto, H. (2018). Linked Color Imaging and Blue Laser Imaging for Upper Gastrointestinal Screening. The Korean Society of Gastrointestinal Endoscopy. https://doi.org/10.5946/ce.2018.132
Hussein, M., González‐Bueno Puyal, J., Lines, D., Sehgal, V., Toth, D., Ahmad, O. F., … Haidry, R. (2022). A new artificial intelligence system successfully detects and localises early neoplasia in Barrett’s esophagus by using convolutional neural networks. Wiley. https://doi.org/10.1002/ueg2.12233
Shibata, T., Teramoto, A., Yamada, H., Ohmiya, N., Saito, K., & Fujita, H. (2020). Automated Detection and Segmentation of Early Gastric Cancer from Endoscopic Images Using Mask R-CNN. Applied Sciences, 10(11), 3842. https://doi.org/10.3390/app10113842
Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2017). ImageNet classification with deep convolutional neural networks. Association for Computing Machinery (ACM). https://doi.org/10.1145/3065386
Lin, C.-H., Hsu, P.-I., Tseng, C.-D., Chao, P.-J., Wu, I.-T., Ghose, S., … Lee, T.-F. (2023). Application of artificial intelligence in endoscopic image analysis for the diagnosis of a gastric cancer pathogen -Helicobacter pylori infection. Research Square Platform LLC. https://doi.org/10.21203/rs.3.rs-2843263/v1
Takeda, T., Asaoka, D., Ueyama, H., Abe, D., Suzuki, M., Inami, Y., … Nagahara, A. (2024). Development of an Artificial Intelligence Diagnostic System Using Linked Color Imaging for Barrett’s Esophagus. MDPI AG. https://doi.org/10.3390/jcm13071990
Yoshida, N., Dohi, O., Inoue, K., Yasuda, R., Murakami, T., Hirose, R., … Itoh, Y. (2019). Blue Laser Imaging, Blue Light Imaging, and Linked Color Imaging for the Detection and Characterization of Colorectal Tumors. The Editorial Office of Gut and Liver. https://doi.org/10.5009/gnl18276
Hussein, M., Lines, D., González-Bueno Puyal, J., Kader, R., Bowman, N., Sehgal, V., … Haidry, R. (2023). Computer-aided characterization of early cancer in Barrett’s esophagus on i-scan magnification imaging: a multicenter international study. Elsevier BV. https://doi.org/10.1016/j.gie.2022.11.020
Swied, M. Y., Alom, M., Daaboul, O., & Swied, A. (2024). Screening and Diagnostic Advances of Artificial Intelligence in Endoscopy. Innovative Healthcare Institute. https://doi.org/10.36401/iddb-23-15
Jong, M. R., Jaspers, T. J. M., Kusters, C. H. J., Jukema, J. B., van Eijck van Heslinga, R. A. H., … Fockens, K. N. (2025). Challenges in Implementing Endoscopic Artificial Intelligence: The Impact of Real‐World Imaging Conditions on Barrett’s Neoplasia Detection. Wiley. https://doi.org/10.1002/ueg2.12760
Nie, Z., Xu, M., Wang, Z., Lu, X., & Song, W. (2024). A Review of Application of Deep Learning in Endoscopic Image Processing. MDPI AG. https://doi.org/10.3390/jimaging10110275
Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.
Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.
Downloads
-
PDF (Українська)
Downloads: 4
Published
How to Cite
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).