Розробка генератора детермінованого хаосу на основі транзисторної структури з від’ємним опором
DOI:
https://doi.org/10.31649/1681-7893-2025-49-1-247-256Ключові слова:
генератор детермінованого хаосу, автогенератор, детермінований хаос, транзисторна структура, від’ємний диференційний опірАнотація
У роботі запропоновано та досліджено нове схемотехнічне рішення генератору детермінованого хаосу на основі біполярної транзисторної структури з від’ємним диференціальним опором. Сфера передачі даних розширилася за останні роки завдяки швидкому розвитку комунікаційної інфраструктури, такої як мобільні та інтернет-мережі. Забезпечення безпечної передачі даних у електронно-комунікаційних та радіотехнічних приладах і системах має вирішальне значення для підтримки безпеки та реалізації повного потенціалу цих інфокомунікаційних технологій. Серед перспективних розробок у безпеці фізичного рівня в передачі даних є інтеграція теорії хаосу, яка підвищує безпеку, використовуючи властиву хаотичним сигналам непередбачуваність. У роботі розглянута можливість отримання хаотичного режиму в напівпровідниковому генераторі на основі біполярної транзисторної структури з від'ємним диференціальним опором. Дана система генератора хаосу має три динамічні змінні: напруга на еквівалентній ємності транзисторної структури між колекторами першого та другого біполярних транзисторів, а третя це струм, який протікає через індуктивність коливального контуру. Динамічні процеси детермінованого хаосу визначаються реактивними властивостями транзисторної структури з від’ємним диференціальним опором. Розроблено математичну модель генератора детермінованого хаосу у вигляді системи диференціальних рівнянь першого порядку на основі методу змінних стану, яка дозволяє визначити значення частоти вихідного сигналу в залежності від напруги живлення та керування, а також параметрів основних елементів автогенератора в будь-якій точці схеми в заданий момент часу. За допомогою пакету програм MATLAB здійснено комп’ютерне схемотехнічне дослідження параметрів і характеристик генерованих електричних коливань у хаотичному режимі. У порівняні з аналогами запропонований та досліджений генератор детермінованого хаосу має покращену навантажувальну здатність і вищу швидкодію має малий час встановлення стаціонарних коливань.
Посилання
Magyari A., Chen Y. Review of State-of-the-Art FPGA Applications in IoT Networks. Sensors 2022, 22, 7496.
Hussain F., Hussain R., Hassan S.A., Hossain E. Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE Commun. Surv. Tutorials 2020, 22, 1686–1721.
Rawat D.B., Doku R., Garuba M. Cybersecurity in Big Data Era: From Securing Big Data to Data-Driven Security. IEEE Trans. Serv. Comput. 2021, 14, 2055–2072.
Sychowiec J, Zieliński Z. A Blockchain-Based Framework for Secure Data Stream Dissemination in Federated IoT Environments. Electronics. 2025; 14(10):2067. https://doi.org/10.3390/electronics14102067
Sidiropoulos A, Konstantinidis D, Karamanos X, Mastos T, Apostolou K, Chatzis T, Papaspyropoulou M, Marini K, Karamitsos G, Theodoridou C, et al. A Novel Autonomous Robotic Vehicle-Based System for Real-Time Production and Safety Control in Industrial Environments. Computers. 2025; 14(5):188. https://doi.org/10.3390/computers14050188
Vaseghi, B.; Pourmina, M.A.; Mobayen, S. Finite-time chaos synchronization and its application in wireless sensor networks. Trans. Inst. Meas. Control 2018, 40, 3788–3799.
Sun P., Shen S., Wan Y., Wu Z., Fang Z., Gao X.Z. A Survey of IoT Privacy Security: Architecture, Technology, Challenges, and Trends. IEEE Internet Things J. 2024, 11, 34567–34591.
Sauter T., Treytl A. IoT-Enabled Sensors in Automation Systems and Their Security Challenges. IEEE Sensors Lett. 2023, 7, 1–4.
Cirjulina D., Babajans R., Kolosovs D. Design Particularities of Quadrature Chaos Shift Keying Communication System with Enhanced Noise Immunity for IoT Applications. Entropy. 2025; 27(3):296.
Kaddoum G., Tadayon N. Differential Chaos Shift Keying: A Robust Modulation Scheme for Power-Line Communications. IEEE Trans. Circuits Syst. II 2017, 64, 31–35.
Lin Y., Xie Z., Chen T., Cheng X., Wen H. Image privacy protection scheme based on high-quality reconstruction DCT compression and nonlinear dynamics. Expert Syst. Appl. 2024, 257, 124891.
Ludovico Minati. Atypical transistor-based chaotic oscillators: Design, realization, and diversity / Ludovico Minati, Mattia Frasca, Paweł Oświȩcimka, Luca Faes, Stanisław Drożdż. CHAOS. – 2017. – Vol. 27, 073113 (2017). – pp. 073113-1 – 073113-13.
Saber A. Security Analysis of Chaos Based Communication Systems; Carleton University: Ottawa, ON, Canada, 2007.
Anzo-Hernández A, Zambrano-Serrano E, Platas-Garza MA, Volos C. Dynamic Analysis and FPGA Implementation of Fractional-Order Hopfield Networks with Memristive Synapse. Fractal and Fractional. 2024; 8(11):628. https://doi.org/10.3390/fractalfract8110628
Litvinenko A., Aboltins A., Pikulins D., Eidaks J. Frequency Modulated Chaos Shift Keying System for Wireless Sensor Network. In Proceedings of the 2020 Signal Processing Workshop, SPW, Warsaw, Poland, 5–7 October 2020.
Petrzela J., Chaotic States of Transistor-Based Tuned-Collector Oscillator. Mathematics 2023, 11, 2213.
Petrzela J., Polak L. Minimal realizations of autonomous chaotic oscillators based on trans-immittance filters. IEEE Access 2019, 7, 17561–17577.
Valencia-Ponce M.A., Tlelo-Cuautle E., Gerardo de la Fraga L. Estimating the highest time-step in numerical methods to enhance the optimization of chaotic oscillators. Mathematics 2021, 9, 1938.
Osadchuk A.V., Osadchuk V.S., Osadchuk I.A., Seletska O.O., Piotr Kisała, Karlygash Nurseitova. Theory of photoreactive effect in bipolar and MOSFET transistors. Proc. SPIE 11176, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments, 111761I, pp.1-12. 2019.
Osadchuk O.V., Osadchuk I.O., Semenov A.O. The Mathematical Model of Radio-measuring Frequency Transducer of Optical Radiation Based on MOS Transistor Structures with Negative Differential Resistance. Journal of Nano- and Electronic Physics. Scientific journal. Vol. 13 No 4, 04001(6 pp). 2021.
Osadchuk O.V., Osadchuk V.S., Osadchuk I.A. Mathematical Model of a Frequency Pressure Transducer Based on a Resonant Tunneling Diode. Physics and chemistry of solid state. V.23, No. 2 (2022) pp.277-284.
Osadchuk I.A., Osadchuk O.V., Osadchuk V.S., Semenov A.O. Optical Sensor with Frequency Output Based on Resonant Tunneling Diode. Proceedings - 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, TCSET 2022, 2022, pp. 442-446.
Osadchuk V., Osadchuk A., Semenov A., Osadchuk I., Semenova O., Baraban S., Prytula M.. Radiomeasuring Optical-Frequency Transducers Based on Reactive Properties of Transistor Structures with Negative Differential Resistance. Data-Centric Business and Applications ICT Systems-Theory, Radio-Electronics, Information Technologies and Cybersecurity, (Volume 5). Chapter 12. Springer International Publishing. Cham. Editors: Tamara Radivilova, Dmytro Ageyev, Natalia Kryvinska. 2020, pp.229-261.
https://uk.mathworks.com/help/simulink/index.html
Marc M. Sepantaie, Nader M. Namazi, and Amir M. Sepantaie. Spectral analysis and implementation of secure chaotic free-space optical communication systems. Optical Engineering 57(10), 106101 (5 October 2018).
Shi, B.; Sui, T.; Zhang, T.; Jiang, Q. A Spread Spectrum Parameter Optimization Analysis for Differential Chaotic Shift Keying. In Proceedings of the ICMLCA 2021 2nd International Conference on Machine Learning and Computer Application, Shenyang, China, 17–19 December 2021; Volume 9, pp. 7–11.
##submission.downloads##
-
pdf
Завантажень: 6
Опубліковано
Як цитувати
Номер
Розділ
Ліцензія
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).