Comparative analysis of algorithms for simplification of polygons and broken lines

Authors

  • D.V. Kotsur Taras Shevchenko National University of Kyiv

DOI:

https://doi.org/10.31649/1681-7893-2018-36-2-5-13

Keywords:

polygon, polyline, visualization, simplification algorithm

Abstract

The article deals with the analysis of the existing algorithms for polygons and polylines simplification. A comparative analysis of the complexities of the algorithms has been carried out. The performed experiments allowed us to measure the empirical execution time of the algorithms and to establish the dependence of the simplicity degree on the tolerable error of the algorithm.

Author Biography

D.V. Kotsur, Taras Shevchenko National University of Kyiv

аспірант кафедри математичної інформатики, факультету комп’ютерних наук та кібернетики

References

B. P. Buttenfield, R. B. McMaster, (1991). Map Generalization: making rules for knowledge representation. New York: John Wiley & Sons.

V. Tereshchenko, Y. Tereshchenko, (2017). Triangulating a region between arbitrary Polygons. International Journal of Computing, 16, 3, 160-165.

M. Berg, O. Cheong, M. Kreveld, M. Overmars, (2008). Computational Geometry: Algorithms and Applications, (3rd ed.). Berlin: Springer.

N. Mustafa, S. Krishnan, G. Varadhan, S. Venkatasubramanian, (2006). Dynamic simplification and visualization of large maps. International Journal of Geographical Information Science, 20, 3, 273-302.

D. Douglas, T. Peucker, (1973). Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. The Canadian Cartographer, 10, 2, 112–122. doi:10.3138/FM57-6770-U75U-7727

M. Visvalingam, J. D. Whyatt, (1993). Line generalisation by repeated elimination of points. Cartographic Journal, 30, 46-51.

K. Reumann, A. P. M. Witkam, (1973). Optimizing curve segmentation in computer graphics. In Proc. International Computing Symposium, 467–472.

H. Opheim, (1982). Fast data reduction of a digitized curve. Geo-Processing, 2, 33–40.

T. Lang, (1969). Rules for robot draughtsman. Geographical Magazine, 42, 50-51.

Z. Zhao, A. Saalfeld, (1997). Linear-time sleeve-fitting polyline simplification algorithms. InProc. Annual Convention and Exposition Technical Papers, 214-223.

J. Song, R. Miao, (2016). A Novel Evaluation Approach for Line Simplification Algorithmstowards Vector Map Visualization. International Journal of Geo-Information, 5, 12, 223. doi: 10.3390/ijgi5120223

C. Maple, (2003). Geometric design and space planning using the marching squares andmarching cube algorithms. In Proc. International Conference on Geometric Modeling and Graphics, 90-95. doi: 10.1109/GMAG.2003.1219671

P. Cignoni, C. Rocchini, R. Scopigno, (1998). Metro: Measuring Error on Simplified Surfaces.Computer Graphics Forum, 17, 2, 167–174.

Downloads

Abstract views: 313

Published

2019-07-08

How to Cite

[1]
D. Kotsur, “Comparative analysis of algorithms for simplification of polygons and broken lines”, Опт-ел. інф-енерг. техн., vol. 36, no. 2, pp. 5–13, Jul. 2019.

Issue

Section

OptoElectronic/Digital Methods and Systems for Image/Signal Processing

Metrics

Downloads

Download data is not yet available.