Investigation of intrapersonal and interpersonal variability of dynamic signature parameters in the process of their identification

Authors

  • V.V. Kutsman Vinnytsia National Technical University
  • O.K. Kolesnytsʹkyy Vinnytsia National Technical University
  • I.K. Denysov Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1681-7893-2020-40-2-5-15

Abstract

The choice of dynamic parameters of the signature, steady against geometric variability is substantiated, the process of their normalization both on amplitude, and on time is described. The stability of dynamic signature parameters to intrapersonal variability is investigated on the basis of statistical analysis of scatter parameters of individual signature implementations relative to the average dependence. The sensitivity of dynamic signature parameters to interpersonal variability is investigated. The validity of the choice of the parameter l(t) and the unreasonableness of the choice of the parameter α(t) for use in the highly reliable method of dynamic identification of signatures based on the spiking neural network are proved.

Author Biographies

V.V. Kutsman, Vinnytsia National Technical University

аспірант кафедри комп'ютерних наук, інженер-програміст ТОВ «УЛФ-ФІНАНС»,

O.K. Kolesnytsʹkyy, Vinnytsia National Technical University

доцент, канд. техн. наук, доцент кафедри комп’ютерних наук

I.K. Denysov, Vinnytsia National Technical University

викладач кафедри комп’ютерних наук

References

M. Diaz, M. A. Ferrer, D. Impedovo, M. I. Malik, G. Pirlo, and R. Plamondon, “A Perspective Analysis of Handwritten Signature Technology”, ACM Comput. Surv., Vol. 51, No. 6, Article 117, January 2019.

Al-banhawy N. H., Mohsen H., Ghali N. I. (2020) "Signature identification and verification systems: a comparative study on the online and offline tech-niques", Future Computing and Informatics Journal: Vol. 5 : Iss. 1 , Article 3.

I.M. El-Henawy, M. Z. Rashad, O. Nomir, and K. Ahmed, “Online Signature Verification: State of the art”, International Journal of Computers & Technology, Volume 4, No. 2, March-April, 2013.

В. В. Куцман і О. К. Колесницький, «Верифікація та розпізнавання підпису як багатопараметричного процесу на основі спайкінгової нейронної мережі», ІТКІ, том 50, № 1, с. 36–44, Квіт 2021.

W. Maass, “Networks of spiking neurons: the third generation of neural network models”, Neural Networks, 10:1659-1671, 1997.

О. К. Колесницкий, and Самра Муавия Хассан Хамо, “Метод распознавания многомерных временных рядов при помощи импульсных нейронных сетей”, Інформаційні технології та комп‘ютерна інженерія, 2006, №2(6), c. 86-93.

J. Ortega-Garcia, J. Fierrez-Aguilar, and et al., “MCYT Baseline Corpus: A Bimodal Biometric Database,” Proc. IEEE Vision, Image and Signal Processing, Special Issue on Biometrics on the Internet, vol. 150, no. 6, pp. 395–401, 2003.

R. Tolosana, R. Vera-Rodriguez, J. Fierrez, and J. Ortega-Garcia, “DeepSign: Deep On-Line Signature Verification”, Preprint in IEEE Transactions on Biometrics Behavior and Identity Science, January 2021.

O. K. Kolesnytskyj, I. V. Bokotsey, and S. S. Yaremchuk, “Optoelectronic Implementation of Pulsed Neurons and Neural Networks Using Bispin-Devices”, Optical Memory & Neural Networks (Information Optics), 2010, Vol.19, №2, рр.154-165.

O. K. Kolesnytskyj, V. V. Kutsman, K. Skorupski, and M. Arshidinova, “Neurocomputer architecture based on spiking neural network and its optoelectronic implementation”, Proc. SPIE 11176, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2019, 1117609 (6 November 2019); doi: https://doi.org/10.1117/12.2536607.

Downloads

Abstract views: 160

Published

2021-09-01

How to Cite

[1]
V. Kutsman, O. Kolesnytsʹkyy, and I. Denysov, “Investigation of intrapersonal and interpersonal variability of dynamic signature parameters in the process of their identification”, Опт-ел. інф-енерг. техн., vol. 40, no. 2, pp. 5–15, Sep. 2021.

Issue

Section

OptoElectronic/Digital Methods and Systems for Image/Signal Processing

Metrics

Downloads

Download data is not yet available.