Method of arrhythmia classification on ECG signal

Authors

  • O. V. Kovalchuk Khmelnytskyi National University
  • O. V. Barmak Khmelnytskyi National University

DOI:

https://doi.org/10.31649/1681-7893-2024-48-2-34-44

Keywords:

medical diagnosis, electrocardiogram, ECG classification, artificial intelligence, convolutional neural networks

Abstract

This paper proposes an improved arrhythmia classification method based on a convolutional neural network (CNN) applied to ECG signals. To improve the quality of classification, ECG signals were split into fragments containing three cardiac cycles with the current cardiac cycle in the center. The improved CNN architecture includes the addition of batch normalization layers, an additional convolutional layer, and a dropout layer, which improvs the model's accuracy. In addition, hyperparameters were optimized for new CNN architecture. The model was trained data of the MIT-BIH Arrhythmia Database to classify nine classes of ECG. The achieved average accuracy of 99.26% confirms the effectiveness of the proposed method in diagnosing various types of arrhythmias

Author Biographies

O. V. Kovalchuk, Khmelnytskyi National University

graduate student of the Department of Computer Sciences

O. V. Barmak , Khmelnytskyi National University

Ph.D., professor, head of the Department of Computer Sciences

References

Hassan S., Zahid M., Abdullah T., Husain K., “Classification of cardiac arrhythmia using a convolutional neuralnetwork and bi-directional long short-term memory”, Digit. Health, 2022, pp. 1-13, doi: 10.1177/20552076221102766.

Liu F., Zhou X., Cao J., Wang Z., Wang H., Zhang Y. “A LSTM and CNN Based Assemble Neural Network Framework for Arrhythmias Classification”, ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK, 2019, pp. 1303-1307, doi: 10.1109/ICASSP.2019.8682299.

Xu X., Liu H., “ECG Heartbeat Classification Using Convolutional Neural Networks”, IEEE Access, vol. 8, pp. 8614-8619, 2020, doi: 10.1109/ACCESS.2020.2964749.

Degirmenci M., Ozdemir M. A., Izci E., Akan A., “Arrhythmic Heartbeat Classification Using 2D Convolutional Neural Networks”, IRBM, 2021, doi: 10.1016/j.irbm.2021.04.002

Rohmantri R., Surantha N., “Arrhythmia Classification using 2D Convolutional Neural Network”, the International Journal of Advanced Computer Science and Applications, pp. 201-208, 2020.

Ullah A., Anwar S. M., Bilal M., Mehmood R. M., “Classification of Arrhythmia by Using Deep Learning with 2-D ECG Spectral Image Representation”, Remote Sensing, 2020. doi:10.3390/rs12101685».

Giriprasad P., Sanjeeva reddy A., Sreehari R.V., “Automatic Classification of Cardiac Arrhythmias based on ECG Signals Using Transferred Deep Learning Convolution Neural Network”, Journal of Physics: Conference Series, Volume 2089, 1st International Conference on Applied Mathematics, Modeling and Simulation in Engineering (AMSE), 2021. doi:10.1088/1742-6596/2089/1/012058.

Vu T. A., Huy H. Q., Khanh P. D., Huyen N. T. M., Uyen T. T. T., Huong P. T. V., “Classifyarrhythmia by using 2Dspectral images and deep neural network”, 2021, doi: 10.11591/ijeecs.v25.i2.pp931-940».

Zhang H., Liu C., Zhang Z., Xing Y., Liu X., Dong R., He Y. H., Xia L., Liu F., “Recurrence Plot-Based Approach for Cardiac Arrhythmia Classification Using Inception-ResNet-v2”, Front Physiol, 2021, doi: 10.3389/fphys.2021.648950.

Abdelhafid E., Aymane E., Benayad N., Abdelalim S., Hachem E. Y. A. M., Rachid O. H. T., Brahim B., “ECG Arrhythmia Classification Using Convolutional Neural Network”, The International Journal of Emerging Technology and Advanced Engineering, 2022, pp. 186-195, doi: 10.46338/ijetae0722_19

Yang G., Pennington J., Rao V., Sohl-Dickstein J., Schoenholz S. S., “A Mean Field Theory of Batch Normalization”, 2019, doi.org/10.48550/arXiv.1902.08129.

Moody G., R. Mark, “The impact of the MIT-BIH Arrhythmia Database”, IEEE Eng in Med and Biol, 2001, pp. 45-50, doi: 10.1109/51.932724.

Adaptive Moment Estimation. [Online]. Available: https://medium.com/@nerdjock/deep-learning-course-lesson-7-4-adam-adaptive-moment-estimation-e23434850bfc.

Hoo Z. H., Candlish J., Teare D., “What is an ROC curve?” Emergency Medicine Journa, 2017, pp. 357-359, doi: 10.1136/emermed-2017-206735.

Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.

Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.

Highly linear Microelectronic Sensors Signal Converters Based on Push-Pull Amplifier Circuits / edited by Waldemar Wojcik and Sergii Pavlov, Monograph, (2022) NR 181, Lublin, Comitet Inzynierii Srodowiska PAN, 283 Pages. ISBN 978-83-63714-80-2

Pavlov Sergii, Avrunin Oleg, Hrushko Oleksandr, and etc. System of three-dimensional human face images formation for plastic and reconstructive medicine // Teaching and subjects on bio-medical engineering Approaches and experiences from the BIOART-project Peter Arras and David Luengo (Eds.), 2021, Corresponding authors, Peter Arras and David Luengo. Printed by Acco cv, Leuven (Belgium). - 22 P. ISBN: 978-94-641-4245-7.

Intellectual technologies in medical diagnosis, treatment and rehabilitation: monograph / [S. In Pavlova, O.G. Avrunina, S.M. Zlepka, E.V. Bodyanskyi, etc.]; edited by S. Pavlov, O. Avrunin. - Vinnytsia: PP "TD "Edelweiss and K", 2019. -260 p. ISBN 978-617-7237-59-3.

Vasyl V. Kukharchuk, Sergii V. Pavlov, Samoil Sh. Katsyv, and etc. (2021). Transient analysis in 1st order electrical circuits in violation of commutation laws”, Przegląd elektrotechniczny, ISSN 0033-2097, R. 97 NR 9/2021, p. 26-29, doi:10.15199/48.2021.09.05.

Pavlov S.V, Petruk V.G., Kolesnik P.F. (2007). Photoplethysmohrafic technologies of the cardiovascular control: monography, Vinnitsa: Universum-Vinnitsa, 254 p.

Wójcik W, Mezhiievska I, Pavlov SV, Lewandowski T, Vlasenko OV, Maslovskyi V, Volosovych O, Kobylianska I, Moskovchuk O, Ovcharuk V, et al. (2023). Medical Fuzzy-Expert System for Assessment of the Degree of Anatomical Lesion of Coronary Arteries. International Journal of Environmental Research and Public Health. 20(2):979. https://doi.org/10.3390/ijerph20020979.

Downloads

Abstract views: 99

Published

2024-11-19

How to Cite

[1]
O. V. . Kovalchuk and O. V. . Barmak, “Method of arrhythmia classification on ECG signal”, Опт-ел. інф-енерг. техн., vol. 48, no. 2, pp. 34–44, Nov. 2024.

Issue

Section

OptoElectronic/Digital Methods and Systems for Image/Signal Processing

Metrics

Downloads

Download data is not yet available.