ZOOM vario-optical systems of optoelectronic sensors with immobile components
DOI:
https://doi.org/10.31649/1681-7893-2025-50-2-251-268Keywords:
liquid vario-lens, zoom-afocal system, zoom-relay system, auto-focus lens, zoom systems with immobile componentsAbstract
The main focus of this paper is on the application of adaptive optics elements in vario-optical systems of optoelectronic sensors. The aim is to provide vario-systems with variable values of their external paraxial parameters and characteristics under the condition of immobility of the system components. The basics of preliminary design of optical autofocusing systems, zoom-afocal systems and zoom-relay systems have been developed, which allow to synthesize such systems taking into account the requirements to their external characteristics and parameters. The results of studies of two-component vario-systems of these types with the use of liquid vario-lenses functioning on the effect of electro-wetting or on the use of elastomeric membrane, the shape of which is regulated by external mechanical pressure, are presented. These are the products of Corning® Varioptic®,. Optotune®. Studies of auto-focusing systems, Galileo- and Kepler-type zoom-afocal systems, and zoom-relay optical systems have shown the influence on their external paraxial parameters and on the size of their field of view of the working ranges of the optical power of vario-lenses and the diameters of their apertures. It is shown that it is possible to create zoom-optical systems of all the above-mentioned types using only two liquid vario-lenses. The influence of functional parameters of these liquid vario-lenses on the dimensions of optical systems is also shown. The materials of the article are addressed to specialists who create zoom-optical systems of optoelectronic sensors.
References
Introduction to adaptive lenses / Shin-Tson Wu, Hongwen Ren ISBN 978-1-118-01899-6 References and links 1. M. Ye and S. Sato, “Optical properties of liquid crystal lens of any size,” Jpn. J. Appl. Phys. 41, L571-L573 (2002).
B. Wang, M. Ye, M. Honma, T. Nose, and S. Sato, “Liquid crystal lens with spherical electrode,” J pn. J. Appl. Phys. 41, L1232-L1233 (2002).
H. Ren Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable-focus flat liquid crystal spherical lens,” Appl. Phys. Lett. 84, 4789- 4791 (2004).
X. Wang, H. Dai, and K Xu, “Tunable reflective lens array based on liquid crystal on silicon,” Opt. Express 13, 352-357 (2005).
N. Chronis, G. L. Liu, K. H. Jeong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370-2378 (2003).
K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
J. Chen, W. Wang, J. Fang, and K. Varahramtan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675-680 (2004).
H. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931-5936 (2007).
T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
S. Kuiper and B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128-1130 (2004). terephthalate) insulating films,” Polymer 37, 2465-2470 (1996).
C. C. Cheng and J. A. Yeh, “Dielectrically actuated liquid lens,” Opt. Express 15, 7140-7145 (2007).
H. Ren and S. T. Wu, “Tunable-focus liquid microlens array using dielectrophoretic effect,” Opt. Express 16, 2646- 2652 (2008).
H. Ren, D. Fox, B. Wu, and S. T. Wu, “Liquid crystal lens with large focal length tunability and low operating voltage,” Opt. Express 15, 11328 (2007).
S. Gauza, H. Wang, C. H. Wen, S. T. Wu, A. J. Seed, and R. Dabrowski, “High birefringence isothiocyanato tolane liquid crystals,” Jpn. J. Appl. Phys. Part 1, 42, 3463-3466 (2003).
S. Gauza, C. H. Wen, S. T. Wu, N. Janarthanan, and C. S. Hsu, “Super high birefringence isothiocyanato biphenyl-bistolane liquid crystals,” Jpn. J. Appl. Phys. 43, 7634-7638 (2004).
J. D. Jackson, Classical Electrodynamics (Viley, New York, 1975), 2nd ed.
T. Krupenkin, S. Yang, and P. Mach, “Tubable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003). G. C. Knollman, J. L. Bellin, and J. L. Weaver, “Variable-focus liquid-filled hydroacoustic lens,” J. Acoust. Soc. Am. 49, 253–261 (1971).
N. Sugiura and S. Morita, “Variable-focus liquid-filled optics lens,” Appl. Opt. 32, 4181–4186 (1993). [PubMed]
D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett. 82, 3171–3172 (2003).
K. H. Jeong, G. L. Liu, N. Chronis, and L. P. Lee, “Tunable microdoublet lens array,” Opt. Express 12, 2494–2500 (2004). [PubMed]
P. M. Moran, S. Dharmatilleke, A. H. Khaw, and K. W. Tan, “Fluid lenses with variable focal length,” Appl. Phys. Lett. 88, 041120 (2006).
H. Ren, D. Fox, P. Anderson, B. Wu, and S. T. Wu, “Tunable-focus liquid lens controlled using a servo motor,” Opt. Express 14, 8031–8036 (2006). . [PubMed]
H. Ren, Y. H. Fan, S. Gauza, and S. T. Wu, “Tunable flat liquid crystal spherical lens,” Appl. Phys Lett. 84, 4789–4791 (2004).
E. Hecht, Optics, 4th edition (Addison Wesley, New York, 2002).
https://www.optotune.com/downloads
Chyzh, I. G. Theory of optical systems. Textbook [Electronic resource] : Electronic text data. – Kyiv: Igor Sikorsky Kyiv Polytechnic Institute, 2021. - 426 с. https://ela.kpi.ua/handle/123456789/46029.2
Pavlov, S.V., Kozhukhar, A. T., Electro-optical system for the automated selection of dental implants according to their colour matching, Przegląd elektrotechniczny, ISSN 0033-2097, R. 93 NR 3, 2017, pp. 121-124.
Kholin. V. V., Chepurna, O. M., Pavlov S., Methods and fiber optics spectrometry system for control of photosensitizer in tissue during photodynamic therapy, Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 1003138.
Rovira, R. H., Tuzhanskyy, S., Pavlov, S. V., Savenkov, S. N., Kolomiets I. S., Polarimetric characterisation of histological section of skin with pathological changes, Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100313E.
Zabolotna, N. I.; Pavlov S. V., Radchenko, K. O.; Stasenko, V. A. , Wójcik, W., Diagnostic efficiency of Mueller-matrix polarization reconstruction system of the phase structure of liver tissue, Proc. SPIE 9816, Optical Fibers and Their Applications, 2015, 98161E.
Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.
Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.
Downloads
-
PDF
Downloads: 0
Published
How to Cite
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).