Method for searching and analyzing e-additives and other components in food products of the population
DOI:
https://doi.org/10.31649/1681-7893-2025-50-2-62-72Keywords:
artificial intelligence, food additives, E-additives, method, intelligent IT-system, machine learning, CV, NLPAbstract
The research is dedicated to the development of a formal method and a corresponding intelligent IT-system that allows consumers to automatically determine the content of food additives (E-additives) and provide an assessment of potential health risks based on EFSA and WHO data by photographing a product label. To implement the proposed approach, a combination of Natural Language Processing (NLP) methods for label text analysis, Computer Vision (CV) for ingredient recognition, and Machine Learning (ML) for classifying their hazard based on EFSA and WHO data was used. The experimental results showed that the system achieved an accuracy of 94% in recognizing E-additives on the test dataset (10,000 images). It was found that 23% of the analyzed products contain additives with potential allergenicity (for example, E320, E621). Furthermore, highly processed products contain a relatively larger number of additives, which is fully consistent with the results of previous studies in the field of food toxicology. The proposed method and the technological means for its implementation are promising for mass monitoring of food quality and consumer informing.
References
EFSA. European Food Safety Authority. – Режим доступу: https://www.efsa.europa.eu/en (дата звернення: 09.09.2025).
Piper, M. E., Schlam, T. R., Cook, J. W., Sheffer, M. A., Smith, S. S., Loh, W.-Y., Bolt, D. M., Kim, S.-Y., Kaye, J. T., Hefner, K. R., & Baker, T. B. (2012). Tobacco withdrawal components and their relations with cessation success. Psychopharmacology (Berlin), 216(4), 569–578. https://doi.org/10.1007/s00213-011-2250-3.
Calakos KC, Hillmer AT, Angarita GA, Baldassarri SR, Najafzadeh S, Emery PR, Matuskey D, Huang Y, Cosgrove KP. Recently Abstinent Smokers Exhibit Mood-Associated Dopamine Dysfunction in the Ventral Striatum Compared to Nonsmokers: A [11C]-(+)-PHNO PET Study. Nicotine Tob Res. 2022 Mar 26;24(5):745-752. doi: https://doi,org/10.1093/ntr/ntab208. PMID: 34628508; PMCID: PMC8962719.
Karpievitch, Y. V., Polpitiya, A. D., Anderson, G. A., Smith, R. D., & Dabney, A. R. (2011). Liquid chromatography mass spectrometry-based proteomics: Biological and technological aspects. arXiv. https://arxiv.org/abs/1101.1154.
Open Food Facts. – Режим доступу: https://ua.openfoodfacts.org/ (дата звернення: 09.09.2025).
Sneha Lodha, Sushmita Shinde, Abhinav Anand, Pratik Dalvi, Dr. Jagannath Nalavade, 2025, NutriScan: AI-Based Ingredient Detection and Evaluation, INTERNATIONAL JOURNAL OF ENGINEERING RESEARCH & TECHNOLOGY (IJERT) Volume 14, Issue 05 (May 2025), DOI : https://doi,org/10.17577/IJERTV14IS050197.
Food E-Additives Recognition API [Електронний ресурс]. – Microsoft marketplace. – Режим доступу: https://marketplace.microsoft.com/uk-ua/product/SaaS/devissoftware.foodes (дата звернення: 09.09.2025).
Prbn. NutriLensAI [Електронний ресурс]. – GitHub. – Режим доступу: https://github.com/Prbn/NutriLensAI (дата звернення: 09.09.2025).
Roopa N K, Bi Bi Ameena, Ayesha Siddiqua. Analysis of Food Additives in Packaged Food Materials using AI and ML [Електронний ресурс]. – International Research Journal of Engineering and Technology, Vol. 11, Issue: 07, July 2024. – Pp. 127-132. – Режим доступу: https://www.irjet.net/archives/V11/i7/IRJET-V11I718.pdf (дата звернення: 09.09.2025).
Margin of Exposure [Електронний ресурс]. – European Food Safety Authority (EFSA). – Режим доступу: https://www.efsa.europa.eu/en/topics/topic/margin-exposure (дата звернення: 09.09.2025).
EcoMole s.r.o., 2024. Novel foods Risk Assessment Data Modelling and Extraction (NORA). [Електронний ресурс]. – EFSA supporting publication 2025:EN-9256. – 59 pp. – doi:10.2903/sp.efsa.2025.EN-9256. – Режим доступу: https://efsa.onlinelibrary.wiley.com/doi/pdf/10.2903/sp.efsa.2025.EN-9256 (дата звернення: 09.09.2025).
Open Food Facts. Open Food Facts Blog. – Режим доступу: https://blog.openfoodfacts.org/en/ (дата звернення: 09.09.2025).
World Health Organization (2017) Evaluation of certain food additives. World Health Org Tech Rep Ser, 1–162. – Режим доступу: https://inchem.org/documents/jecfa/jecmono/v1000je01.pdf (дата звернення: 09.09.2025).
FoodRepo. A community-driven open database for barcoded food products. – Режим доступу: https://www.foodrepo.org/en (дата звернення: 09.09.2025).
Food-Info.net. E-numbers: 600–700. – Режим доступу: https://www.food-info.net/uk/e/e600-700.htm (дата звернення: 09.09.2025).
Downloads
-
PDF (Українська)
Downloads: 0
Published
How to Cite
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).