Method for calculating the scattering function of an optical system point

Authors

  • V.M. Borovitsky National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • O.E. Hudz National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • S.Ye. Tuzhansky Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1681-7893-2021-41-1-69-77

Keywords:

point spread function, optical system, Fourier transform, Huygens-Fresnel principle, intensity distribution, optical microscopy, spatial resolution

Abstract

The article presents a mathematical apparatus for precise calculation of the three-dimensional point spread function (PSF) of a high-aperture optical system. The proposed method is based on the Huygens-Fresnel principle: a spherical wave on the three-dimensional surface of the exit pupil is considered as result of the superposition of elementary secondary point radiation sources. These point sources emit coherent electromagnetic waves with a spherical wave front. They form a certain distribution of generalized complex amplitudes in three-dimensional space near the focus point. This distribution is used to calculate the intensity distribution in the focus area of ​​the optical system, which is the PSF. The article presents the results of PSFcalculations and their comparative.

Author Biographies

V.M. Borovitsky, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

д.т.н., професор кафедри комп’ютерно-інтегрованих оптичних та навігаційних систем приладобудівного факультету

O.E. Hudz, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

аспірант кафедри комп’ютерно-інтегрованих оптичних та навігаційних систем приладобудівного факультету

S.Ye. Tuzhansky, Vinnytsia National Technical University

к.т.н., доцент кафедри лазерної та оптикоелектронної техніки

References

Goodman J. W., [Introduction to Fourier optics], McGrawHill, SanFrancisco (1968).

Born M., Wolf E., [Principles of Optics, 5th ed.], Pergamon, Oxford (1975).

Sheppard C., "Three-dimensional transfer functions," SPIE Proc. 3831, 166 - 171 (2000).

Smith C. W., Botcherby E. J., Wilson T., "Resolution of oblique-plane images in sectioning microscopy," Optics express 19 No 3, 2664 - 2669 (2011)

Schonle A., Hell B. W., “Calculation of vectorial three-dimensional functions in large-angle focusing systems,” J.Opt. Boc. Am. A 19 No. 10, p. 2121 -2126 (2002).

Borovytsky V., Chorna V., "Intensity distribution near focal point of high aperture optical system formed by partly polarized light," SPIE Proc. 7427, 09.1 - 09.12 (2009).

Smith W. J., [Lens design: a resource manual], McGrawHill, Boston (1992).

Carl Zeiss Microscopy GmbH,"Objectives from Carl Zeiss. ExceedingYour Expectations," Carl Zeiss Microscopy GmbH, Jena (2007).

Borovytsky V., "Digital optical microscopeas a sampled imaging system: mathematical description, camera selection and focusing," SPIE Proc. 8486, 0D.1 - 0D.12 (2012).

Downloads

Abstract views: 167

Published

2022-05-02

How to Cite

[1]
V. Borovitsky, O. Hudz, and S. Tuzhansky, “Method for calculating the scattering function of an optical system point”, Опт-ел. інф-енерг. техн., vol. 41, no. 1, pp. 69–77, May 2022.

Issue

Section

Optical-Electronic Devices and Components in Laser and Energy Technologies

Metrics

Downloads

Download data is not yet available.