Classification of Facet Systems of Technical Vision

Authors

  • V. Borovytsky Igor Sikorsky Kyiv Polytechnic Institute
  • V. Antonenko Igor Sikorsky Kyiv Polytechnic Institute

DOI:

https://doi.org/10.31649/1681-7893-2021-42-2-21-32

Keywords:

facet system, technical vision, biologically similar vision, optical system, photoreceptor, signal processing, autonomous vehicles

Abstract

The article proposes a classification of facet systems of technical vision. According to this classification, all systems are divided into groups depending on the type of optical system, which can be represented as a combination of microlenses, optical fibers and an objective, and the type of photoreceptors - matrix, linear or single-element photoreceptor. The construction of facet systems was considered, an analysis of their advantages and disadvantages was performed, recommendations were formulated regarding the choice of a facet system of technical vision.

References

B. Custers, The Future of Drone Use, Hague: TMC Asser Press, 2016.

R. D'Andrea, «Guest Editorial Can Drones Deliver?,» IEEE Transactions on Automation Science and

Engineering, т. 11, pp. 647-648, 2014.

G. Gallego, T. Delbruck, G. Orchard, C. Bartolozzi, B. Taba, A. Censi, S. Leutenegger, A. Davison, J.

Conradt, K. Daniilidis та D. Scaramuzza, «Event-based Vision: A Survey,» arXiv, pp. 1-25, 2019.

J. Barrios-Avilés, T. Iakymchuk, J. Samaniego, L. D. Medus та A. Rosado-Muñoz, «Movement Detection

with Event-Based Cameras: Comparison with Frame-Based Cameras in Robot Object Tracking Using

Powerlink Communication,» Electronics, т. 7 (11), p. 304, 2018.

M. F. Land та D.-E. Nilsson, Animal Eyes, Oxford: Oxford Press, 2012, p. 271.

B. Schoenemann, H. Pärnaste та E. N. K. Clarkson, «Structure and function of a compound eye, more than

half a billion years old,» Proc. of NAS, т. 114 (51), pp. 13489-13494, 2017.

D. G. Stavenga та R. Clayton Hardie, Facets of Vision, Heidelberg: Springer Berlin, 1989, pp. 454,

https://doi.org/10.1007/978-3-642-74082-4.

V. Benno Meyer-Rochow, «Compound eyes of insects and crustaceans: Some examples that show there is

still a lot of work left to be done,» Insect Science, т. 22, pp. 461-481, https://doi.org/10.1111/1744-

12117, 2015.

«Compound eye,» [Онлайновий]. Available: https://en.wikipedia.org/wiki/Compound_eye.

«Insect Senses,» 2009. [Онлайновий]. Available:

https://cals.arizona.edu/classes/ento415/LECTURES/ENTO415_Senses09.pdf.

C. Yang, J. Cao, Y. Zhang та Q. Hao, «Review of state-of-the-art artificial compound eye imaging

systems,» Bioinspir.Biomim., т. 14, pp. 44, https://doi.org/10.1088/1748-3190/aaffb5, 2019.

S. Jun Park, Bio-Inspired Optic Flow Sensors for Artificial Compound Eyes, Michigan: The University of

Michigan, 2014.

N. H. Franceschini, «Small Brains, Smart Machines: From Fly Vision to Robot Vision and Back Again,»

Proceedings of the IEEE, т. 102, pp. 751-781, DOI: 10.1109/JPROC.2014.2312916, 2014.

«The Amazing Housefly Part 2: Coolest Eye Ever,» 11 November 2009. [Онлайновий]. Available:

http://watchingtheworldwakeup.blogspot.com/2009/11/amazing-housefly-part-2-coolest-eye.html.

M. F. Land, «The optical structures of animal eyes,» Current Biology, т. 15, pp. 319-323,

DOI:https://doi.org/10.1016/j.cub.2005.04.041, 2005.

D. Keum, K.-W. Jang, D. S. Jeon, C. S. H. Hwang, E. K. Buschbeck, M. H. Kim та K.-H. Jeong, «Xenos

peckii vision inspires an ultrathin digital camera,» Light: Science & Applications, т. 7, p. 80, 2018.

K. Stollberg, A. Brückner, J. Duparré, P. Dannberg, A. Bräuer та A. Tünnermann, «The Gabor superlens as

an alternative waferlevel camera approach inspired by superposition compound eyes of nocturnal insects,»

Optics Express, т. 17, pp. 15747-15759, 2009.

C. Shi, Y. Wang, C. Liu, T. Wang, H. Zhang, W. Liao, Z. Xu та W. Yu, «SCECam: a spherical compound

eye camera for fast location and recognition of objects at a large field of view,» Optic Express, т. 25, pp.

-32345, 2017.

Z. Deng, F. Chen, Q. Yang, H. Bian, G. Du, J. Yong, C. Shan та X. Hou, «Dragonfly-Eye-Inspired

Artificial Compound Eyes with Sophisticated Imaging,» Advanced Functional Materials, т. 26, pp. 1995-

, doi: 10.1002/adfm.201504941, 2016.

F. M. Reininger, «Fiber Coupled Artificial Compound Eye». USA Патент US7376314B2, 20 05 2008.

F. M. Reininger, «Multihybrid artificial compound eye with varied ommatidia». USA Патент US

/0026592 A1, 2 02 2012.

D. Bo, D. Zhang та S. Zhuang, «Fabrication of large micro-structured high-numerical-aperture optofluidic

compound eyes with tunable angle of view,» Optic Express, т. 26, pp. 33356-33365, DOI:

1364/OE.26.033356, 2018.

R. Hornsey, P. Thomas, W. Wong, S. Pepic, K. Yip та R. Krishnasamy, «Electronic Compound-Eye Image

Sensor: Construction and Calibration,» Proc. SPIE, т. 5301, pp. 13-24, 2004.

R. Leitel, A. Brückner, W. Buß, S. Viollet, R. Pericet-Camara, H. Mallot, A. Bräuer, «Curved artificial

compound-eyes for autonomous navigation,» Proceedings of SPIE, т. 9130, p. 11, 2014.

F. Colonnier, A. Manecy, R. Juston, H. Mallot, R. Leitel, D. Floreano, S. Viollet, «A small-scale hyperacute

compound eye featuring active eye tremor: application to visual stabilization, target tracking, and shortrange

odometry,» IOP Publishing Ltd, т. 10, pp. 19, http://dx.doi.org/10.1088/1748-3190/10/2/026002,

S. Viollet, F. Ruffier, «Method for fabricating an artificial compound eye». DE Патент EP2306230B1, 21

2011.

Y. M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.-H. Kim, R. Li,

K. B. Crozier, Y. Huang та J. A. Rogers, «Digital cameras with designs inspired by the arthropod eye,»

Nature, т. 497, pp. 95-99, 2013.

V. Borovytsky та V. Antonenko, «Biologically inspired compound eye,» Proc. of SPIE, т. 11369, 2019.

V. Borovytsky та V. Antonenko, «Image sensor with parallel signal processing for motion detection,» Proc.

of SPIE, т. 11351, 2020

V. Borovytsky та V. Antonenko, «Speed measurement sensor for an unmanned aerial vehicle». Ukraine

Патент u2019 07417, 2019.

F. Ruffier, S. Viollet, S. Amic та N. Franceschini, «Bio-inspired optical flow circuits for the visual

guidance of Micro-Air Vehicles,» Proceedings of the 2003 International Symposium on, т. 3, pp. 846,

DOI:10.1109, 2003.

S. Viollet, «Vibrating makes for better seeing: from the fly’s micro-eye movements to hyperacute visual

sensors,» Frontiers in Bioengineering and Biotechnology, pp. 8, https://doi.org/10.3389/fbioe.2014.00009,

R. Juston та S. Viollet, «A miniature bio-inspired position sensing device for the control of micro-aerial

robots,» 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1118-1124, doi:

1109/IROS.2012.6385937, 2012.

F. Wippermann, J.-C. Zufferey, D. Floreano, N. Franceschini, S. Viollet та F. Ruffier, «Artificial compound

eye and method for fabrication thereof». DE Патент EP2306230A1, 06 04 2011.

В. Боровицький та В. Антоненко, «Датчик швидкості для безпілотного літального апарату». Україна

Патент u 2019 07417, 03 07 2019.

D. L. Marks, H. S. Son, J. Kim та D. J. Brady, «Engineering a gigapixel monocentric multiscale camera,»

Optical Engineering, т. 51, p. 13, 2012.

Y. Wang, B. Cai, Y. Lu, X. Chen та K. Wang, «Optical system design of artificial compound eye based on

field stitching,» Microwave and Optical Technology Letters, т. 59, pp. 1277-1279, 2017.

D. R. Golish, E. M. Vera, K. J. Kelly, Q. Gong, P. A. Jansen, J. M. Hughes, D. S. Kittle, D. J. Brady та M.

E. Gehm, «Development of a scalable image formation pipeline for multiscale gigapixel photography,»

Optics Express, т. 20, pp. 22048-22062, 2012.

Q. Hao, Z. Wang, J. Cao та F. Zhang, «A Hybrid Bionic Image Sensor Achieving FOV Extension and

Foveated Imaging,» Sensors, т. 18, p. 14, 2018.

Z. Wang, J. Cao, Q. Hao та F. Zhang, «Combining compound eyes and human eye: a hybrid bionic imaging

method for FOV extension and foveated vision,» SPIE Proceedings, т. 11053, pp. 10,

https://doi.org/10.1117/12.2511336, 2019.

J.-C. Zufferey, A. Beyeler та D. Floreano, «Visual autopilot for near-obstacle flight». CH Патент WO

/127907 A1, 22 10 2009.

S. Viollet, F. Ruffier, A. Manecy та J. Diperi, «System for detecting a contrasted target». FR Патент WO

/177781 A1, 10 11 2016.

F. Ruffier та F. Expert, «Motion sensor assembly for determining the angular velocity of a moving contrast

in its field of view with a high accuracy». FR Патент WO 2014/063989 A1, 01 05 2014.

L. Kerhuel, F. Ruffier та S. Viollet, «Method and device for measuring the angular velocity of a luminance

transition zone and steering aid system for fixation and tracking a target comprising at least one such

luminance transition zone». FR Патент WO 2011/073085 A1, 07 06 2011.

J.-C. Zufferey, Bio-inspired vision-based flying robots, THÈSE NO 3194 (2005) ÉCOLE

POLYTECHNIQUE FÉDÉRALE DE LAUSANNE POUR L'OBTENTION DU GRADE DE DOCTEUR

ÈS SCIENCES Lausanne, 2005, 202 р., https://infoscience.epfl.ch/record/33663.

M. Ma, H. Li, X. Gao, W. Si, H. Deng, J. Zhang, X. Zhong, K. Wang, “Target orientation detection based

on a neural network with a bionic bee-like compound eye,” Opt. Express 28, 10794-10805 (2020)

Downloads

Abstract views: 217

Published

2022-10-24

How to Cite

[1]
V. Borovytsky and V. Antonenko, “ Classification of Facet Systems of Technical Vision”, Опт-ел. інф-енерг. техн., vol. 42, no. 2, pp. 21–32, Oct. 2022.

Issue

Section

Systems Of Technical Vision And Artificial Intelligence, Image Processing And Pattern Recognition

Metrics

Downloads

Download data is not yet available.