Researching the possibilities of using ai technologies for digital image processing: review and applications
DOI:
https://doi.org/10.31649/1681-7893-2024-48-2-78-87Keywords:
digital image processing, artificial intelligence, image generation, medical diagnostics.Abstract
This paper explores the potential of artificial intelligence (AI) technologies in the field of digital image processing, analyzing current applications and future prospects. AI-based image processing techniques, such as noise reduction, super-resolution, inpainting, and image generation, are transforming traditional approaches, offering new levels of accuracy, efficiency, and creative potential. The paper examines AI applications across various fields, including healthcare for medical diagnostics, cultural heritage for art restoration, industry for quality control, and marketing for content creation.
References
Mittal, Mamta, MaanakArora, Tushar Pandey, and Lalit Mohan Goyal. (2020): Image segmentation using deep learning techniques in medical images. Advancement of machine intelligence in interactive medical image analysis, p. 41-63.
Ghosh, Swarnendu, Nibaran Das, Ishita Das, and Ujjwal Maulik. (2019). Understanding deep learning techniques for image segmentation, ACM computing surveys (CSUR)52, № 4, p. 1-35: https://doi.org/10.1145/3329784.
Mat, Shabudin Bin, Richard Green, Roderick Galbraith, and Frank Coton. (2016). The effect of edge profile on delta wing flow. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 230, № 7, p. 1252-1262: https://doi.org/10.1177/0954410015606939.
Minaee, Shervin, Yuri Boykov, Fatih Porikli, Antonio Plaza, Nasser Kehtarnavaz, and Demetri Terzopoulos. (2021). Image segmentation using deep learning: A survey."IEEE transactions on pattern analysis and machine intelligence, № 7, p. 3523-3542.
Ajit A, Acharya K, Semanta A. (2020). A review of convolutional neural networks. International Conference on Emerging Trends in Information Technology and Engineering (ic-ETITE): 1-5. [DOI LINK].
Amidi A, Amidi S. (2019). VIP Cheatsheet for CS 230 - Deep Learning: Convolutional Neural Networks. Stanford University, p. 1-5. [Downloaded from this Link 6-22-22].
Brownlee J. (2019). How to visualize filters and feature maps in convolutional neural networks. In: Deep Learning for Computer Vision, p.1-17.
Yosinski J, Clune J, Nguyen A, et al. (2015). Understanding neural networks through deep visualization. ArXiv 1506.06579. [ArXiv Link].
Zeiler MD, Fergus R. (2013). Visualizing and understanding convolutional networks. ECCV 2014, Arxiv 13.11.2901, [ArXiv LINK].
Chen X, Duan Y, Houthooft R, Schulman J, Sutskever I, Abbeel P (2016). Infogan: Interpretable representation learning by information maximizing generative adversarial nets. In: Advances in neural information processing systems, p. 2172–2180.
Chen Y, Lai YK, Liu YJ (2018). Cartoongan: Generative adversarial networks for photo cartoonization. In: Proceedings of the IEEE conference on computer vision and pattern recognition, p. 9465–9474
Chongxuan L, Xu T, Zhu J, Zhang B (2017). Triple generative adversarial nets. In: Advances in neural information processing systems, p. 4088–4098.
Dai P, Ji R, Wang H, Wu Q, Huang Y (2018). Cross-modality person re-identification with generative adversarial training. In: IJCAI, p. 677–683.
Dash A, Gamboa JCB, Ahmed S, Liwicki M, Afzal MZ (2017). Tac-gan-text conditioned auxiliary classifier generative adversarial network. arXiv preprint arXiv:1703.06412.
Deng W, Zheng L, Ye Q, Kang G, Yang Y, Jiao J (2018). Image-image domain adaptation with preserved self-similarity and domain-dissimilarity for person re-identification. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 994–1003.
Denton EL, Chintala S, Fergus R, et al (2015). Deep generative image models using a laplacian pyramid of adversarial networks. In: Advances in neural information processing systems, p. 1486–1494.
Doersch C (2016). Tutorial on variational autoencoders. arXiv preprint arXiv:1606.05908.
Donahue J, Krahenbuhl P, Darrell T (2016). Adversarial feature learning. arXiv preprint arXiv:1605.09782
Dumoulin V, Belghazi I, Poole B, Mastropietro O, Lamb A, Arjovsky M, Courville A (2016). Adversarially learned inference. arXiv preprint arXiv:1606.00704.
Ehsani K, Mottaghi R, Farhadi A (2018). Segan: segmenting and generating the invisible. In: Proceedings of the IEEE conference on computer vision and pattern recognition, p. 6144–6153.
Wójcik Waldemar, Smolarz Andrzej (2017). Information Technology in Medical Diagnostics, July 11, 2017 by CRC Press, 210 Pages.
Wójcik W., Pavlov S., Kalimoldayev M. (2019). Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book, 336 Pages.
Highly linear Microelectronic Sensors Signal Converters Based on Push-Pull Amplifier Circuits / edited by Waldemar Wojcik and Sergii Pavlov, Monograph, (2022) NR 181, Lublin, Comitet Inzynierii Srodowiska PAN, 283 Pages. ISBN 978-83-63714-80-2
Pavlov Sergii, Avrunin Oleg, Hrushko Oleksandr, and etc. (2021). System of three-dimensional human face images formation for plastic and reconstructive medicine // Teaching and subjects on bio-medical engineering Approaches and experiences from the BIOART-project Peter Arras and David Luengo (Eds.), , Corresponding authors, Peter Arras and David Luengo. Printed by Acco cv, Leuven (Belgium). - 22 P. ISBN: 978-94-641-4245-7.
Pavlov S.V., Avrunin O.G., etc. (2019). Intellectual technologies in medical diagnosis, treatment and rehabilitation: monograph / [S. In edited by S. Pavlov, O. Avrunin. - Vinnytsia: PP "TD "Edelweiss and K", 260 p. ISBN 978-617-7237-59-3.
Downloads
-
PDF
Downloads: 6
Published
How to Cite
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).