Application of artificial intelligence for automated interpretation of optical retinal images in diabetic retinopathy

Authors

  • O. Kornilenko Vinnytsia National Technical University
  • O. Karas Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1681-7893-2025-49-1-209-216

Keywords:

diabetic retinopathy, artificial intelligence, deep learning, fundus imaging, automated diagnosis, ophthalmology

Abstract

This article explores the application of artificial intelligence (AI) for the automated interpretation of optical retinal images in diabetic retinopathy. It presents the main imaging methods, including fundus photography and optical coherence tomography, and analyzes deep learning algorithms used to detect retinopathic changes. The study evaluates the effectiveness of current autonomous systems, such as IDx-DR and EyeArt, and outlines key limitations of their use. Special attention is given to ethical, technical, and legal aspects of AI implementation in ophthalmic practice. The article highlights AI’s potential as a tool for early screening and prevention of vision loss in diabetic patients.

Author Biographies

O. Kornilenko, Vinnytsia National Technical University

postgraduate

O. Karas, Vinnytsia National Technical University

PhD, senior lecturer of the department

References

World Health Organization. (2016). Global report on diabetes. World Health Organization.

Cheung, N., Mitchell, P., & Wong, T. Y. (2010). Diabetic retinopathy. The Lancet, 376(9735), 124-136.

Abràmoff, M. D., Lavin, P. T., Birch, M., Shah, N., & Folk, J. C. (2018). Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices. NPJ Digital Medicine, 1, Article 39.

American Diabetes Association. (2023). Standards of Medical Care in Diabetes. Diabetes Care, 46(Supplement_1), S1-S290.

Early Treatment Diabetic Retinopathy Study Research Group. (1991). Early photocoagulation for diabetic retinopathy. Ophthalmology, 98(5), 766–785.

Brown, D. M., Schmidt-Erfurth, U., Do, D. V., Holz, F. G., Boyer, D. S., Vitti, R., ... & Heier, J. S. (2015). Intravitreal aflibercept for diabetic macular edema: 100-week results from the VISTA and VIVID studies. Ophthalmology, 122(10), 2044–2052.

Gulshan, V., Peng, L., Coram, M., Stumpe, M. C., Wu, D., Narayanaswamy, A., ... & Webster, D. R. (2016). Development and Validation of a Deep Learning Algorithm for Detection of Diabetic Retinopathy in Retinal Fundus Photographs. JAMA, 316(22), 2402–2410.

Leuschen, J. N., Schuman, S. G., Winter, K. P., McCall, M. N., Melia, M., & Friedman, S. M. (2013). Spectral domain optical coherence tomography in diabetic macular edema: a review of the literature. Retina, 33(5), 1110–1118.

Silva, P. S., Cavallerano, J. D., Sun, J. K., & Aiello, L. M. (2011). Nonmydriatic ultrawide field retinal imaging compared with dilated standard 7-field 35-mm photography and retinal specialist examination for evaluation of diabetic retinopathy. American Journal of Ophthalmology, 152(3), 528-536.

Rajalakshmi, R., Subashini, R., Anjana, R. M., Mohan, V. (2018). Automated diabetic retinopathy detection in smartphone-based fundus photography using artificial intelligence. Eye, 32, 1138–1144.

Ting, D. S. W., Pasquale, L. R., Peng, L., Campbell, J. P., Lee, A. Y., Raman, R., ... & Wong, T. Y. (2020). Artificial intelligence and deep learning in ophthalmology. British Journal of Ophthalmology, 104(2), 167–175.

Holzinger, A., Biemann, C., Pattichis, C. S., & Kell, D. B. (2017). What do we need to build explainable AI systems for the medical domain? Review of the state of the art and current challenges. arXiv preprint, arXiv:1712.09923.

[13] Maa, A. Y., Bailey, S. T., et al. (2020). Validation of Artificial Intelligence-based Screening for Diabetic Retinopathy. JAMA Network Open, 3(3), e200783.

[14] Li, Z., He, Y., Keel, S., Meng, W., Chang, R. T., & He, M. (2019). Efficacy of a deep learning system for detecting diabetic retinopathy in community-based primary care settings. NPJ Digital Medicine, 2, 33

Holzinger, A., Carrington, A., & Müller, H. (2020). Measuring the quality of explanations: The system causability scale (SCS). KI - Künstliche Intelligenz, 34, 193–198.

Price, W. N., & Cohen, I. G. (2019). Privacy in the age of medical big data. Nature Medicine, 25(1), 37–43.

De Fauw, J., Ledsam, J. R., Romera-Paredes, B., et al. (2018). Clinically applicable deep learning for diagnosis and referral in retinal disease. Nature Medicine, 24(9), 1342–1350.

Blease, C., Kaptchuk, T. J., Bernstein, M. H., et al. (2019). Artificial intelligence and the future of primary care: Exploratory qualitative study of UK general practitioners’ views. Journal of Medical Internet Research, 21(3), e12802.

Cuadros, J., & Bresnick, G. (2009). EyePACS: an adaptable telemedicine system for diabetic retinopathy screening. Journal of Diabetes Science and Technology, 3(3), 509–516.

Beede, E., Baylor, E., Hersch, F., et al. (2020). A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems, 1–12.

Saha, S. K., Fernando, B., Cuadros, J., & Kanagasingam, Y. (2019). Automated Quality Assessment of Fundus Images for Diabetic Retinopathy Screening: A Deep Learning Approach. International Journal of Medical Informatics, 124, 105–112.

Reddy, R. K., Dwarakanathan, S., Kanagasingam, Y., & Yogesan, K. (2022). Challenges in AI implementation in eye care services in low-income countries. Global Health Action, 15(1), 2022782.

van der Heijden, A. A., Abramoff, M. D., Verbraak, F. D., et al. (2018). Validation of Automated Screening for Referable Diabetic Retinopathy With the IDx-DR Device in the Hoorn Diabetes Care System. Acta Ophthalmologica, 96(1), 63–68.

Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.

Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.

Highly linear Microelectronic Sensors Signal Converters Based on Push-Pull Amplifier Circuits / edited by Waldemar Wojcik and Sergii Pavlov, Monograph, (2022) NR 181, Lublin, Comitet Inzynierii Srodowiska PAN, 283 Pages. ISBN 978-83-63714-80-2

Pavlov Sergii, Avrunin Oleg, Hrushko Oleksandr, and etc. (2021). System of three-dimensional human face images formation for plastic and reconstructive medicine // Teaching and subjects on bio-medical engineering Approaches and experiences from the BIOART-project Peter Arras and David Luengo (Eds.), Corresponding authors, Peter Arras and David Luengo. Printed by Acco cv, Leuven (Belgium). - 22 P. ISBN: 978-94-641-4245-7.

Pavlov S.V., Avrunin O.G., etc. (2019). Intellectual technologies in medical diagnosis, treatment and rehabilitation: monograph / [S. In edited by S. Pavlov, O. Avrunin. - Vinnytsia: PP "TD "Edelweiss and K", 260 p. ISBN 978-617-7237-59-3.

Romanyuk, O., Zavalniuk, Y., Pavlov, S., etc. (2023). New surface reflectance model with the combination of two cubic functions usage, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, , 13(3), pp. 101–10

Kukharchuk, Vasyl V., Sergii V. Pavlov, Volodymyr S. Holodiuk, Valery E. Kryvonosov, Krzysztof Skorupski, Assel Mussabekova, and Gaini Karnakova. (2022). "Information Conversion in Measuring Channels with Optoelectronic Sensors" Sensors 22, no. 1: 271. https://doi.org/10.3390/s22010271.

Vasyl V. Kukharchuk, Sergii V. Pavlov, Samoil Sh. Katsyv, and etc. (2021). Transient analysis in 1st order electrical circuits in violation of commutation laws”, Przegląd elektrotechniczny, ISSN 0033- 2097, R. 97 NR 9/2021, p. 26-29, doi:10.15199/48.2021.09.05.

Pavlov S.V, Petruk V.G., Kolesnik P.F. (2007). Photoplethysmohrafic technologies of the cardiovascular control: monography, Vinnitsa: Universum-Vinnitsa, 254 p

Downloads

Abstract views: 3

Published

2025-06-18

How to Cite

[1]
O. Kornilenko and O. Karas, “Application of artificial intelligence for automated interpretation of optical retinal images in diabetic retinopathy”, Опт-ел. інф-енерг. техн., vol. 49, no. 1, pp. 209–216, Jun. 2025.

Issue

Section

Biomedical Optical And Electronic Systems And Devices

Metrics

Downloads

Download data is not yet available.