Method of segmentation of OCT images using a convulsive neural network

Authors

  • A.V. Shcherbatyuk Vinnytsia National Technical University
  • S.Eu. Tuzhanskyi Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1681-7893-2025-49-1-178-184

Keywords:

optical coherence tomography, convolutional neural network, U-Net, Gaussian filter, structural similarity index.

Abstract

The article analyzes the methods of segmentation of optical coherence tomography images, creates a convolutional neural network model U-Net, processes a series of test images from an open database, and compares the results of processing with other algorithms using the structural similarity index (SSIM). Pre-processing of test images to improve the quality of segmentation is also performed. Preprocessing of test images was also carried out to improve the quality of segmentation. In this work, the U-Net convolutional neural network was created, trained and applied. Existing methods of segmentation of optical coherence tomography images for the diagnosis and monitoring of ophthalmic diseases were considered. The advantages of using the U-Net deep convolutional neural network in comparison with classical methods, such as the Sobel operator and the Pruitt operator, were analyzed. Unlike classical algorithms, which have limited ability to adapt to noise, image heterogeneity and pathologies, U-Net provided higher accuracy of image segmentation.

Author Biographies

A.V. Shcherbatyuk, Vinnytsia National Technical University

Postgraduate student of the Department of Biomedical Engineering and Optoelectronic Systems

S.Eu. Tuzhanskyi, Vinnytsia National Technical University

Candidate of Technical Sciences, Associate Professor of the Department of Biomedical Engineering and Optoelectronic Systems

References

Physical foundations of biomedical optics: monograph / [Pavlov S. V., Kozhem’yako V. P., Kolisnyk P. F. et al.] – Vinnytsia: VNTU, 2010. – 155 p.

Cui, C. & Lakshminarayanan, Vasudevan. (2003). The reference axis in corneal refractive surgeries: Visual axis or the line of sight?. Journal of Modern Optics - J MOD OPTIC. 50. 1743-1749. 10.1080/0950034031000070053.

Adaptive optics: textbook / [Vasyura A. S., Pavlov S. V., Prokopova M. O. et al.] – Vinnytsia: VNTU, 2015. – 281 p. ISBN 978-966-641-638-7

Shcherbatyuk A. V., Tuzhanskyi S. Ye. Analysis of optical models of the human eye. Materials of the All-Ukrainian scientific and practical Internet conference "Youth in science: research, problems, prospects (MN-2024)", Vinnytsia, May 11-20, 2024. Electronic. text. data. 2024. URI: https://conferences.vntu.edu.ua/index.php/mn/mn2024/paper/viewFile/21550

Pavlov S. V., Poplavskyi A. A., Poplavskaya A. A., Babiuk N. P.. Method of automatic determination of segmentation threshold for improving the quality of image parameter prediction. Method of automatic determination of segmentation threshold for improving the quality of image parameter prediction / S. V. Pavlov, A. A. Poplavskyi, A. A. Poplavskaya, N. P. Babiuk // Optical-electronic information and energy technologies. - 2013. - No. 2. - P. 8-12.

Pavlov S. V., Saldan Y. R., Zlepko S. M., Azarov O. D., Tymchenko L. I., Abramenko L. V. Methods of preprocessing tomographic images of the fundus. Information technologies and computer engineering. 2019. No. 2. P. 4-12.

Shcherbatyuk A. V., Tuzhansky S. Ye. Methods of contour selection on OCT images. Materials of the LIV All-Ukrainian scientific and technical conference of the faculty of information electronic systems. 2025 URI: https://conferences.vntu.edu.ua/index.php/all-frtzp/all-frtzp-2025/paper/view/24051/20059

Yasenko L. S. Properties of a convolutional neural network based on an autoencoder / L. S. Yasenko, Ya. M. Klyatchenko // Information Technologies and Computer Engineering. – 2021. – No. 3. – P. 77-85. URI: http://ir.lib.vntu.edu.ua//handle/123456789/36494

Kugelman, J., Allman, J., Read, S.A. et al. A comparison of deep learning U-Net architectures for posterior segment OCT retinal layer segmentation. Sci Rep 12, 14888 (2022). https://doi.org/10.1038/s41598-022-18646-2

Image classification assessment for transfer learning in convolutional neural networks [Text] / M. S. Mamuta, I. V. Kravchenko, O. D. Mamuta, S. E. Tuzhansky // Optical-electronic information and energy technologies. – 2023. – No. 1 (45). – P. 64-70. URI: http://ir.lib.vntu.edu.ua//handle/123456789/37992

Kermany, Daniel; Zhang, Kang; Goldbaum, Michael (2018), “Large Dataset of Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images”, Mendeley Data, V3, doi: 10.17632/rscbjbr9sj.3

SSIM-PIL Python Lib https://github.com/ChsHub/SSIM-PIL

Shcherbatyuk A. V., Tuzhansky S. Ye. Optical coherence tomography methods and image filtering algorithms for ophthalmological diagnostics. Optical-electronic information and energy technologies. 2024. No. 1. P. 148-154. URL: http://jnas.nbuv.gov.ua/article/UJRN-0001494647

Downloads

Abstract views: 1

Published

2025-06-18

How to Cite

[1]
A. Shcherbatyuk and S. Tuzhanskyi, “Method of segmentation of OCT images using a convulsive neural network”, Опт-ел. інф-енерг. техн., vol. 49, no. 1, pp. 178–184, Jun. 2025.

Issue

Section

Biomedical Optical And Electronic Systems And Devices

Metrics

Downloads

Download data is not yet available.