Features of using EXPLAINABLE AI in biomedical image processing: transparency and interpretability of models

Authors

  • Yu.O. Pylypets Vinnytsia National Technical University
  • Ya.I. Yaroslavskyy National University "Odesa Polytechnic"
  • O.S. Volosovych Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1681-7893-2025-50-2-210-214

Keywords:

Artificial Intelligence (AI), Explanatory AI (XAI), biomedical image processing, biomedical signal processing, deep learning, machine learning, interpretability, model transparency, clinical decision support, segmentation, classification, data-driven models

Abstract

Artificial intelligence (AI) has become deeply integrated into numerous scientific fields, including biomedical image and signal processing. The growing interest in this field has led to a surge in research, as evidenced by the sharp increase in scientific activity. Using large and diverse biomedical datasets, machine learning and deep learning models have transformed a variety of tasks - such as modeling, segmentation, registration, classification, and synthesis - often outperforming traditional methods.

However, a major challenge remains: the difficulty of translating AI-derived results into clinically or biologically meaningful solutions, which limits the practical utility of these models. Explainable AI (XAI) seeks to bridge this gap by improving the interpretability of AI systems and offering transparent explanations for their decisions. More and more approaches are being developed to address this problem, and interest in the topic in the scientific community continues to grow.

Author Biographies

Yu.O. Pylypets, Vinnytsia National Technical University

аспірант кафедри біомедичної інженерії та оптикоелектронних систем; офіцер відділення звʼязку, Військово-медичний клінічний центр Центрального регіону, м. Вінниця

Ya.I. Yaroslavskyy, National University "Odesa Polytechnic"

к.т.н., старший викладач кафедри біомедичної інженерії;  директор, ДП «Вінницький науково-дослідний та проектний інститут землеустрою»

O.S. Volosovych, Vinnytsia National Technical University

аспірант кафедри біомедичної інженерії та оптико-електронних систем

References

Almpani S., Kiouvrekis Y., Stefaneas P., Frangos P. Computational argumentation for medical device regulatory classification // International Journal on Artificial Intelligence Tools. – 2022.

Aydemir B., Hoffstetter L., та ін. Tempsal-uncovering temporal information for deep saliency prediction // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. – 2023.

Bach S., Binder A., Montavon G., Klauschen F., Müller K.-R., Samek W. On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation // PloS one. – 2015.

Bastani O., Kim C., Bastani H. Interpretability via model extraction // Fairness, Accountability, and Transparency in Machine Learning Workshop. – 2017.

Bernal J., Mazo C. Transparency of artificial intelligence in healthcare: insights from professionals in computing and healthcare worldwide // Applied Sciences. – 2022.

Bibal A., Lognoul M., De Streel A., Frénay B. Legal requirements on explainability in machine learning // Artificial Intelligence and Law. – 2021.

European Data Protection Board. Guidelines on automated individual decision-making and profiling for the purposes of regulation 2016/679 (WP251rev.01). – 2018. – Режим доступу: https://ec.europa.eu/newsroom/article29/items/612053/en.

Bondarenko A., Aleksejeva L., Jumutc V., Borisov A. Classification tree extraction from trained artificial neural networks // Procedia Computer Science. – 2017.

European Commission. General Data Protection Regulation, 2016. – Режим доступу: https://eur-lex.europa.eu/eli/reg/2016/679/oj.

European Commission. Regulation (EU) 2017/745 of the European Parliament and of the Council of 5 April 2017 on medical devices. – 2017. – Режим доступу: https://eur-lex.europa.eu/legal-content/DE/TXT/?uri=CELEX:32017R0745.

European Commission. Artificial Intelligence Act. – 2024. – Режим доступу: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=OJ:L_202401689.

Dash S., Gunluk O., Wei D. Boolean decision rules via column generation // Advances in Neural Information Processing Systems. – 2018.

Dhurandhar A., Chen P.-Y., Luss R., Tu C.-C., Ting P., Shanmugam K., Das P. Explanations based on the missing: Towards contrastive explanations with pertinent negatives // Advances in Neural Information Processing Systems. – 2018. – Vol. 31 (NIPS).

Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.

Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.

Y. Pylypets, S. Pavlov, Y. Yaroslavsky, S. Kostyuk, and M. Ursan, “Features of the application of telemedical technologies based on artificial intelligence in disaster medicine,” Opt-el. inf-energ. tech., vol. 48, no. 2, pp. 190–195, Nov 2024.

Downloads

Abstract views: 0

Published

2026-01-12

How to Cite

[1]
Y. Pylypets, Y. Yaroslavskyy, and O. Volosovych, “Features of using EXPLAINABLE AI in biomedical image processing: transparency and interpretability of models”, Опт-ел. інф-енерг. техн., vol. 50, no. 2, pp. 210–214, Jan. 2026.

Issue

Section

Biomedical Optical And Electronic Systems And Devices

Metrics

Downloads

Download data is not yet available.