A hybrid approach based on analysis of hierarchies and decision tree methods to substitute treatment tactics for patients with atopic
DOI:
https://doi.org/10.31649/1681-7893-2025-50-2-223-232Keywords:
mathematical model, Analytic Hierarchy Process, Decision Tree, Atopic Dermatitis, Multi-criteria Problem, HGBoostAbstract
The article considers the problem of choosing the optimal treatment strategy for patients with atopic dermatitis, which is multi-criteria and depends on clinical, individual and social factors. A hybrid approach is proposed that combines the Analytic Hierarchy Process (AHP) method to determine the significance weights of treatment criteria and a decision tree to model possible therapy scenarios and their results. The model allows systematizing the decision-making process, taking into account the uncertainty of the clinical response and the patient's personal priorities. In addition, for the task of differential diagnosis of atopic dermatitis forms, the XGBoost algorithm was used based on the analysis of 175 disease histories, which provided high classification accuracy (97.14%). The proposed approach contributes to increasing the validity and personalization of therapeutic decisions and can be used as the basis for clinical decision support systems in dermatology.
References
McManus, E., Sach, T., & Levell, N. (2018). The use of decision–analytic models in atopic eczema: A systematic review and critical appraisal. SpringerLink.PDF: https://ueaeprints.uea.ac.uk/id/eprint/64854/1/Accepted_manuscript.pdf
Hongxia, W., Juanjuan, G., Han, W., & Wenlong, L. (2024). An integration of hybrid MCDA framework to the statistical analysis of computer-basedhealth monitoring applications. Frontiers in Public Health, https://doi.org/10.3389/fpubh.2023.1341871.
PDF: https://www.frontiersin.org/journals/publichealth/articles/10.3389/fpubh.2023.1341871/pdf
Ayvaz, B., Tatar, V., Sağır, Z., & Pamucar, D. (2024). An integrated Fine-Kinney risk assessment model utilizing Fermatean fuzzy AHP-WASPAS for occupational hazards in the aquaculture sector. Expert Systems with Applications, ScienceDirect. PDF: https://acikerisim.ticaret.edu.tr/bitstreams/5240c23d-9bcc-4833-b033-777648580daa/download
Chu, X., Sun, B., Mo, X., Liu, J., Zhang, Y., & Weng, H. (2023). Time-series dynamic three-way group decision-making model and its application in TCM efficacy evaluation. Artificial Intelligence Review, SpringerLink
Sotoudeh-Anvari, A. (2022). The applications of MCDM methods in COVID-19 pandemic: A state of the art review. Applied Soft Computing, ScienceDirect. PDF: https://pmc.ncbi.nlm.nih.gov/articles/PMC9245376/pdf/main.pdf
Mittal, R., Jeribi, F., Martin, R. J., & Malik, V. (2024). Dermcdsm: Clinical decision support model for dermatosis using systematic approaches of machine learning and deep learning. IEEE Xplore, https://ieeexplore.ieee.org/abstract/document/10459206/ PDF: https://ieeexplore.ieee.org/iel7/6287639/6514899/10459206.pdf
Avrunin O. Development of Automated System for Video Intermatoscopy / O. G. Avrunin, V. Klymenko, A. Trubitcin, О. Isaeva // Proceedings of the IX International Scientific and Practical Conference International Trends in Science and Technology Vol.2, January 31, 2019, Warsaw, Poland. – P. 6-9.
Trubitsyn, A. A., Isaeva, O. A., Klimenko, V. A., Avrunin, O. G. (2019), "Instrumental methods for assessing the condition of the skin in atopic dermatitis", Science and technology, No. 20, P. 180–187.
Avrunin, O., Trubitcin, A., Isaeva, O., Klymenko, V. (2020), "Possibilities for assessing the effectiveness of treatment of atopic dermatitis based on analysis of color characteristics of video dermatoscopic images", Innovative Technologies and Scientific Solutions for Industries, No. 2 (12), P. 127–133. DOI: https://doi.org/10.30837/2522-9818.2020.12.127
Nosova, Ya. V. Development of the method of express diagnostics of bacterial microflora of the nasal cavity / Ya. V. Nosova, H. Farouk, O.G. Avrunin // Problems of information technologies. -Kherson, 2013. -No 13. -P. 99-104.
Intellectual technologies in medical diagnostics, treatment and rehabilitation: monograph / [S.V. Pavlov, O.G. Avrunin, S.M. Zlepko, E.V. Bodianskyi et al.]; edited by S. Pavlova, O. Avrunina. – Vinnytsia: PP “TD “Edelweiss and K”, 2019. – 260 p.
Misochenko S. Yu. Research on the use of probabilistic methods in the field of biomedical image processing / S. Yu. Misochenko, K. G. Selivanova, O. G. Avrunin // Information technologies: science, engineering, technology, education, health: abstracts of the reports of the XX International Scientific and Practical Conference MicroCAD2022, October 19-21, 2022 – Kharkiv: NTU “KhPI”, 2022. – P. 902.
Kolisnyk, K., Deineko, D., Sokol, T., Kutsevlyak, S., & Avrunin, O. (2019). Application of modern internet technologies in telemedicine screening of patient conditions. IEEE International Scientific-Practical Conference: Problems of Infocommunications Science and Technology, PIC S and T, 459-464. doi: https://doi.org/10.1109/PICST47496.2019.9061252.
Sokol, Y., Avrunin, O., Kolisnyk, K., & Zamiatin, P. (2020). Using medical imaging in disaster medicine. Paper presented at the 2020 IEEE 4th International Conference on Intelligent Energy and Power Systems, IEPS 2020 - Proceedings, 287-290. doi: https://doi.org/10.1109/IEPS51250.2020.9263175
Avrunin, O., Kolisnyk, K., Nosova, Y., Tomashevskyi, R., & Shushliapina, N., “Improving the methods for visualization of middle ear pathologies based on telemedicine services in remote treatment,”. Paper presented at the 2020, IEEE KhPI Week on Advanced Technology, KhPI Week 2020 – Conference Proceedings, 347-350. doi: https://doi.org/10.1109/KhPIWeek51551.2020.9250090.
Selivanova K. G., Avrunin O. G. “Quality improvement of diagnosis of the electromyography data based on statistical characteristics of the measured signals ”, Proc. SPIE 10031, Photonics Applications in Astronomy, Communications, Industry, and High-Energy Physics Experiments 2016, 100312R https://doi.org/10.1117/12.2248953.
Pavlov S. V., Avrunin O. G., Zlepko S. M., Bodiansky E. V., Kolisnyk P. F., Lysenko O. M., Chaykovsky I. A., Filatov V. O. Intelligent technologies in medical diagnostics, treatment and rehabilitation: monograph. Vinnytsia: PP "TD "Edelweiss and K", 2019. 260 p.
Kozhemʼyako V. P. Optical-electronic methods and tools for processing and analyzing biomedical images [monograph] / V. P. Kozhemʼyako, S. V. Pavlov, K. I. Stanchuk. – Vinnytsia: UNIVERSUM, 2006 – 203 p.
Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.
Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.
Downloads
-
PDF (Українська)
Downloads: 0
Published
How to Cite
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).