Improving the quality of recognition by Viola-Jones in enterprise information security problems by pre-processing the image

Authors

  • N. V. Lysak Vinnytsia National Technical University, Ukraine
  • Yu. V. Mironova Vinnytsia National Technical University, Ukraine
  • I. O. Marchenko Sumy State University, Ukraine
  • S. O. Petrov Sumy State University, Ukraine

Keywords:

Viola-Jones method, filtering input, convolution image, face identification, information security company

Abstract

In the work we developed a increasing there liability mechanism of face detection on the image by Viola-Jones algorithm which consistent filtering and processing of the input image. It can significantly improve the reliability of their further recognition to the asymptotic maximum. Using this approach make able to apply Viola-Jones method for ensuring information security in active and passive monitoring modes. The proposed approach uses the methods of the theory of linear algebra and mathematical statistics. The paper shows a specific effect of the use of the proposed approach and shows examples of physical modeling.

Author Biographies

N. V. Lysak, Vinnytsia National Technical University, Ukraine

Cand. Sc. (Eng.), assistant professor of management and security of information systems

Yu. V. Mironova, Vinnytsia National Technical University, Ukraine

Cand. Sc. (Economy.), assistant professor of management and security of information systems

I. O. Marchenko, Sumy State University, Ukraine

student of Computer Science, Sumy State University

S. O. Petrov, Sumy State University, Ukraine

Cand. Sc. (Eng.), senior lecturer in computer science

References

1. Image Processing and Analysis — Variational, PDE, Wavelet, and Stochastic Methods. Society of Industrial and Applied Mathematics // Tony F. Chan and Jackie (Jianhong) Shen, 2005
2. Rama Chellappa, Ashok Veeraraghavan and Gaurav Aggarwal. «Pattern Recognition in Video». Invited paper in International Conference on Pattern Recognition and Machine Intelligence(PReMI), 2005. Published in Lecture Notes in Computer Science, Volume 3776, Dec 2005, Pages 11—20
3. Kai Guo, P. Ishwar, J. Konrad. Action Recognition From Video Using Feature Covariance Matrices, Image Processing, IEEE Transactions, 2013. — 2479—2494 pp.
4. Le Ha Xuan, S.Nitsuwat. Face recognition in video, a combination of eigenface and adaptive skin-color model, Intelligent and Advanced Systems, 2007. ICIAS 2007. International Conference, — 2007. — 742—747 pp.
5. M. Jones, P. Viola. Rapid object detection using a boosted cascade of simple features, Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference (Volume:1 ). — 2001. — 511—518 p.
6. Large-Scale Cover Song Recognition Using The 2D Fourier Transform Magnitude // Thierry Bertin-Mahieux, Daniel P.W. Ellis, 2012
7. Labeled Faces in the Wild Home [Електронний ресурс] // http://vis-www.cs.umass.edu/lfw/
8. Bucatanschi D. G. Kernel Methods for Image Processing. — New York, NY : John Wiley & Sons, Inc. 2006. — 112
9. Rainer Lienhart, Alexander Kuranov, VadimPisarevsky, Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection, 25th DAGM Symposium, Magdeburg, Germany, September 10—12, 2003. Proceedings, — 2003. — 297—303 pp.
10. Інформаційно-аналітична підтримка діяльності університету: інтегрована інформаційна система [Текст]: монографія / А. В. Васильєв, В. В. Хоменко, В. О. Любчак,
Ю. М. Коровайченко, Д. В. Фільченко. — Суми : СумДУ, 2013. — 126 с.

Downloads

Abstract views: 272

Published

2015-07-20

How to Cite

[1]
N. V. Lysak, Y. V. Mironova, I. O. Marchenko, and S. O. Petrov, “Improving the quality of recognition by Viola-Jones in enterprise information security problems by pre-processing the image”, Опт-ел. інф-енерг. техн., vol. 29, no. 1, pp. 70–75, Jul. 2015.

Issue

Section

Systems Of Technical Vision And Artificial Intelligence, Image Processing And Pattern Recognition

Metrics

Downloads

Download data is not yet available.