Photonic integrated circuits for optical matrix-vector multiplication

Authors

  • V.M. Borovytsky National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • I.I. Avdieionok National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • S.E. Tuzhanskyi Vinnytsia National Technical University
  • H.L. Lysenko Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1681-7893-2022-43-1-11-18

Keywords:

photonic integrated circuit, multiplication of vector by matrix, optical waveguide, micro-ring resonator, Mach-Zehnder interferometer

Abstract

The article proposes a classification of photonic integrated circuits (PICs) for optical multiplication of vectors on matrices. According to this classification, such PIC can be divided into two groups. The first group combines multilayer photonic integrated circuits, in which active elements that perform multiplication are located in one layer, and optical waveguides for input and output signals are located in other layers. The second group covers planar PIC, in which active elements are placed in one layer together with optical waveguides. The article describes the construction, principles of operation of FIS of both groups and contains an analysis of their advantages and disadvantages.

Author Biographies

V.M. Borovytsky, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

Doctor of Technical Sciences, Professor of the Department of Computer-Integrated Optical and Navigation Systems

I.I. Avdieionok, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

PhD student of the Department of Computer-Integrated Optical and Navigation Systems

S.E. Tuzhanskyi, Vinnytsia National Technical University

Ph.D., Associate Professor of the Department of Biomedical Engineering and Optoelectronic Systems

H.L. Lysenko, Vinnytsia National Technical University

Ph.D., Professor of the Department of Biomedical Engineering and Optoelectronic Systems

References

N. B. Shakhovska, R. M. Kaminsky, O. B. Vovk, Systems of artificial intelligence. Lviv: Publishing House of Lviv Polytechnic, 2018. 392 p.

B. Patra, An Introduction to Integral Transforms, CRC Press, 2018, 428 p.

S. W. Smith, The Scientist and Engineer's Guide to Digital Signal Processing, The Scientist and Engineer's. California Technical Publishing, 1999, 688 p.

N. N. Sirhan, S. I. Serhan, “Multi-core processors: concepts and implementation,” Int. Journal of Computer Science & Information Technology, Vol 10, No 1, 2018, p. 1 – 10. doi.org/10.5121/ijcsit.2018.10101

D. Zhong, Q. Cao, G. Bosilca, J. Dongarra, "Using Advanced Vector Extensions AVX-512 for MPI Reductions," Proc. EuroMPI/USA - 2020, September 21–24, 2020.

NVIDIA A100 Tensor Core GPU Architecture, Product information, NVIDIA Corporation. 2020, 82 p.

H. Pituach, G. Haplada, "EnLight256 8000 Giga MAC/sec fixed point DSP," Product information, Lenslet Ltd , 2003.

J. Barhen et al., "High performance FFT on multicore processors", Proceedings of the Fifth International Conference on Cognitive Radio Oriented Wireless Networks and Communications, 2010, pp. 1-6, doi: 10.4108/ICST.CROWNCOM2010.9283.

G. L. Lysenko, S. E. Tuzhanskyi and M. M. A. Alravashdi, "Optoelectronic adder and multiplier for implementation of the DMAC algorithm", Optic-Electronic Infor.-Energy Techn., Vol. 2(32), 2017, p. 43–56.

G. L. Lysenko, S. E. Tuzhansky, M. Alravshdeh, "Photonic logic elements based on phase-synchronized SS-VCSEL arrays", Optic-Electronic Information-Energy Technologies, Vol. 2(26). 2013. P. 42-47.

R. Tang, T. Tanemura and Y. Nakano, "Integrated reconfigurable unitary optical mode converter using MMI couplers", IEEE Photonics Technol. Lett. 29, 971–974, 2017.

G. Jochen, L. G. Dr., R. H. Dr. and S. Wolfgang, "Verfahren sowie Vorrichtung zur Entzerrung von optisch übertragenen Daten". Patent DE 10 2005 047 550 A1 2007.04.05, 2007.

H. Nejad and M. Seyyedy, "Columnar1t-nmemory cell structure and its method of formation and operation". Patent US 2005/0162883 A1, 2005.

N. G. Park, B. W. Kim a, A. Poquet, G. Campet, and et. "A new simple method for manufacturing electrochromic tungsten oxide films," Active and Passive Elec. Comp., 1998, Vol. 20, pp. 125-133.

M. P. Browne, H. Nolan, N. C. Berner, G. S. Duesberg and et. "Electrochromic Nickel Oxide Films for Smart Window Applications," Int. J. Electrochem. Sci., No. 11, 2016, p. 6636–6647, doi.org/10.20964/2016.08.38

V. A. Pilipovich, A. K. Esman, I. A. Goncharenko and V. K. Kuleshov, "An optical matrix multiplier", doi.org/10.1364/JOT.73.000834.

L. Yang, R. Ji,L. Zhang, J. Ding, and Q. Xu, "On-chip CMOS-compatible optical signal processor," Optic Express, Vol. 20, No. 12, 2012, p.13560 - 13565.

A. N. Tait, T. F. de Lima, M. A. Nahmias, B. J. Shastri and P. R. Prucnal, "Reconfigurable analog photonic networks," 2017 IEEE Photonics Conference (IPC), 2017, pp. 267-268, doi: 10.1109/IPCon.2017.8116099.

T. F. d. Lima, B. J. Shastri, A. N. Tait and M. A. Nahmias, "Progress in neuromorphic photonics," Nanophotonics, Vo.1, No.39, 2016. doi.org/10.1515/nanoph-2016-0139.

H. Seyringer, Heinz, S. Höchst, J. Lindau, Optischer Matrix-Vektor Multiplizierer, Patent DE 10 2004 014 658 A1 2005.10.13.

V. Bangari, B. A. Marquez, H. Miller, A. N. Tait, and et. Digital Electronics and Analog Photonics for Convolutional Neural Networks (DEAP-CNNs), doi.org/10.1109/JSTQE.2019.2945540, 2019 October.

J. J. Carolan, M. Prabhu, S. A. Skirlo, Y. Shen, and et., "Apparatus and methods for optical neural network". Patent US 11,334,107 B2, 2022.

Y. Shen, L. Jing, R. Dangovski, P. Xie, and et., "Optoelectronic computing system". Patent US 2020/0250534 A1, 2020.

H. Zhou, J. Dong, J. Cheng, W. Dong, and et. "Photonic matrix multiplication lights up photonic accelerator and beyond"," Light: Science & Applications, 2022. doi.org/10.1038/s41377-022-00717-8.

H. H. Zhu, J. Zou, H. Zhang, Y. Z. Shi and et., "Space-efficient optical computing with an integrated chip diffractive neural network," Nature Communications, 13:1044, 2022, p.1-9. doi.org/10.1038/s41467-022-28702-0

Rui Tang, Makoto Okano, Kasidit Toprasertpong, Shinichi Takagi, Dirk Englund, and Mitsuru Takenaka, "Two-layer integrated photonic architectures with multiport photodetectors for high-fidelity and energy-efficient matrix multiplications," Opt. Express 30, 33940-33954 (2022) doi.org/10.1364/OE.457258

Downloads

Abstract views: 250

Published

2022-12-28

How to Cite

[1]
V. Borovytsky, I. Avdieionok, S. Tuzhanskyi, and H. Lysenko, “Photonic integrated circuits for optical matrix-vector multiplication”, Опт-ел. інф-енерг. техн., vol. 43, no. 1, pp. 11–18, Dec. 2022.

Issue

Section

OptoElectronic/Digital Methods and Systems for Image/Signal Processing

Metrics

Downloads

Download data is not yet available.