Analysis of diagnostic methods and systems of diabetic retinopathy

Authors

  • S. V. Pavlov Vinnytsia National Technical University
  • Yo. R. Saldan National Pirogov Memorial Medical University, Vinnytsia
  • O. V. Karas Vinnytsia National Technical University
  • S. V. Tymchyk Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1681-7893-2023-46-2-135-141

Keywords:

diabetic retinopathy, tomography, machine learning, ophthalmoscopy

Abstract

This article is devoted to the analysis of modern methods and systems for diagnosing diabetic retinopathy (DR), a serious ophthalmic complication that develops in patients with diabetes. The work is aimed at determining the optimal approach to the diagnosis of DR, which is important for timely intervention and preservation of visual function in patients with diabetes.

Author Biographies

S. V. Pavlov, Vinnytsia National Technical University

д.т.н., доцент, професор кафедри біомедичної інженерії та оптико-електронних систем

Yo. R. Saldan, National Pirogov Memorial Medical University, Vinnytsia

д.м.н., професор кафедри очних хвороб

O. V. Karas, Vinnytsia National Technical University

PhD, старший викладач кафедри біомедичної інженерії та оптико-електронних систем

S. V. Tymchyk, Vinnytsia National Technical University

к.т.н., доцент, декан факультету інформаційних електронних систем

References

Bandello, F., et al. “Clinical Strategies in the Management of Diabetic Retinopathy.” Springer eBooks, 2014, https://doi.org/10.1007/978-3-642-54503-0.

“Diabetes Risk Factors.” Centers for Disease Control and Prevention, 5 Apr. 2022, www.cdc.gov/diabetes/basics/risk-factors.html. Accessed 6 July 2022.

Diabetic Retinopathy | National Eye Institute. www.nei.nih.gov/learn-about-eye-health/eye-conditions-and-diseases/diabetic-retinopathy. Accessed 25 July 2021.

[94] Murchison, A., et al. “Non-adherence to Eye Care in People With Diabetes.” BMJ Open Diabetes Research & Care, vol. 5, no. 1, BMJ, July 2017, p. e000333. https://doi.org/10.1136/bmjdrc-2016-000333.

Miotto, R., et al. “Deep Learning for Healthcare: Review, Opportunities and Challenges.” Briefings in Bioinformatics, vol. 19, no. 6, Oxford UP, May 2017, pp. 1236–46. https://doi.org/10.1093/bib/bbx044.

Hua, C., et al. “Retinal Vessel Segmentation Using Round-wise Features Aggregation on Bracket-shaped Convolutional Neural Networks.” Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, July 2019, https://doi.org/10.1109/embc.2019.8856552.

Ophthalmological center “New Vision.” “Diagnostic Equipment; New Vision.” New Vision, 27 Oct. 2021, www.zir.com.ua/uk/cherkassy/diahnostychne-obladnannya-cherkassy. Accessed 3 Mar. 2023.

Kronfeld, P. “TONOGRAPHY.” Archives of Ophthalmology, vol. 48, no. 4, American Medical Association, Oct. 1952, pp. 393–404. https://doi.org/10.1001/archopht.1952.00920010402001.

Zablotskyi, V., and Lapchenko, Yu. Optics and Ophthalmology in Medical Instrumentation: Study Guide for Students of Higher Educational Institutions. 2008.

Yannuzzi, L., et al. “Fluorescein Angiography Complication Survey.” Ophthalmology, vol. 93, no. 5, Bentham Science Publishers, May 1986, pp. 611–17. https://doi.org/10.1016/s0161-6420(86)33697-2.

Wikipedia contributors. “Optical Coherence Tomography.” Wikipedia, 15 Jan. 2023, en.wikipedia.org/wiki/Optical_coherence_tomography#Theory. Accessed 2 Apr. 2023.

Ophthalmological center “New Vision.” “Diagnostic Equipment; New Vision.” New Vision, 27 Oct. 2021, www.zir.com.ua/uk/cherkassy/diahnostychne-obladnannya-cherkassy. Accessed 3 Mar. 2023.

Kronfeld, P. “TONOGRAPHY.” Archives of Ophthalmology, vol. 48, no. 4, American Medical Association, Oct. 1952, pp. 393–404. https://doi.org/10.1001/archopht.1952.00920010402001.

Scotland, G., McNamee, P., et al. “Costs and Consequences of Automated Algorithms Versus Manual Grading for the Detection of Referable Diabetic Retinopathy.” British Journal of Ophthalmology, vol. 94, no. 6, BMJ, Dec. 2009, pp. 712–19. https://doi.org/10.1136/bjo.2008.151126.

Wójcik, W., Pavlov, S., Kalimoldayev, M. (2019). Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages, https://doi.org/10.1201/ 9780429057618. eBook ISBN 9780429057618.

Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages. https://doi.org/10.1201/9781315098050. eBook ISBN 9781315098050.

Pavlov Sergii, Avrunin Oleg, Hrushko Oleksandr, and etc. System of three-dimensional human face images formation for plastic and reconstructive medicine // Teaching and subjects on bio-medical engineering Approaches and experiences from the BIOART-project Peter Arras and David Luengo (Eds.), 2021, Corresponding authors, Peter Arras and David Luengo. Printed by Acco cv, Leuven (Belgium). - 22 P. ISBN: 978-94-641-4245-7.

Yosyp R. Saldan, Sergii V. Pavlov, Dina V. Vovkotrub, Waldemar Wójcik, and etc. Efficiency of optical-electronic systems: methods application for the analysis of structural changes in the process of eye grounds diagnosis // Proc. SPIE 10445, Photonics Applications in Astronomy, Communications, Industry, and High Energy Physics Experiments 2017, 104450S; doi: 10.1117/12.2280977;

Downloads

Abstract views: 118

Published

2023-12-13

How to Cite

[1]
S. V. Pavlov, Y. R. Saldan, O. V. Karas, and S. V. Tymchyk, “Analysis of diagnostic methods and systems of diabetic retinopathy”, Опт-ел. інф-енерг. техн., vol. 46, no. 2, pp. 135–141, Dec. 2023.

Issue

Section

Biomedical Optical And Electronic Systems And Devices

Metrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 3 > >>