Simulation of photon migration process in the biological environment

Authors

  • V.S. Pavlov Vinnytsia National Technical University
  • Jurado Ronald Humberto Rovira University Estatal Península de Santa Elena, La Libertad
  • N.I. Zabolotna Vinnytsia National Technical University
  • V.V. Kholin FOTONICA PLUS CO
  • L. E. Nykyforova National University of Life and Environmental Sciences of Ukraine
  • O.S. Komarova FOTONICA PLUS CO

DOI:

https://doi.org/10.31649/1681-7893-2024-47-1-177-186

Keywords:

optical measurements, Monte Carlo method, optically anisotropic biotissues, medical diagnostics.

Abstract

In the article developed as a result of the analysis of the obtained 2D distributions of the anisotropy parameters of the epidermis samples, only linear birefringence was found, the value of which changes in the plane of the section according to the thickness and density of the tissue fibers. Correspondingly, along the same fiber directions, the orientation of the birefringence axis changes smoothly (in the area of ​​the tissue without pathology). For the affected areas of the tissue, the birefringence value is more homogeneous in the cross-section, and in the areas with visible severe damage it is minimal. The change in the orientation of in areas with a small and clearly visible lesion is chaotic. Thus, melanoma destroys epidermal cells so much that they become practically isotropic. Healthy tissue samples have a natural orientational order.

Author Biographies

V.S. Pavlov, Vinnytsia National Technical University

graduate student of the Department of Biomedical Engineering and Optical-Electronic Systems

Jurado Ronald Humberto Rovira, University Estatal Península de Santa Elena, La Libertad

Ph.D. profesor tutor, TECED Research Group

N.I. Zabolotna, Vinnytsia National Technical University

Ph.D., professor of the department of the department of biomedical engineering and optical-electronic systems

V.V. Kholin, FOTONICA PLUS CO

Ph.D., director

L. E. Nykyforova, National University of Life and Environmental Sciences of Ukraine

Ph.D., professor of the Department of Automation and Robotic Systems named after Academician I.I. Martynenko

O.S. Komarova, FOTONICA PLUS CO

technological engineer, graduate student of Igor Sikorsky NTTU Kyiv Polytechnic Institute

References

Born M. Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light / M. Born, E. Wolf // 6th edn. (corrected). – Pergamon Press, 1986. – Р. 45-113.

Wang X. Polarized light propagation through scattering media: time-resolved Monte Carlo simulations and experiments / X. Wang // Journal of biomedical optics. – 2003. – Т. 8. – №. 4. – С. 608-617.

Wang L. MCML – Monte Carlo modeling of light transport in multi-layered tissues / L. Wang, L. J. Steven, Z. Ligiong // Computer methods and programs in biomedicine. – № 47, 1995. – Р 131–145.

Van de Hulst H. C. Multiple light scattering: tables, formulas, and applications / H. C. Van de Hulst // Elsevier, reprinted 2012. – Т. 1. 332 p.

Prahl S. A. A Monte Carlo model of light propagation in tissue / S. A. Prahl, M. Keijzer, S. L. Jacques, A. J. Welch // Dosim. Laser Radiat. Med. Biol. – 1989. – vol. 5. – P. 102-11.

Anisotropy of light propagation in human skin / S. Nickell, M. Hermann, M. Essenpreis, T. J. Farrell, U. Krämer, M. S. Patterson// Physics in medicine and biology. – 2000. – Т. 45. – №. 10. – С. 2873.

Ghosh N. Measurement of optical transport properties of normal and malignant human breast tissue / N. Ghosh //Applied Optics. – 2001. – Т. 40. – №. 1. – С. 176-4.

Ghosh N. Depolarization of light in a multiply scattering medium: effect of the refractive index of a scatterer / N. Ghosh // Physical Review E. – 2004. – Т. 70. – №. 6. – С. 066607.

Zhang R. Determination of human skin optical properties from spectrophotometric measurements based on optimization by genetic algorithms / R. Zhang //Journal of biomedical optics. – 2005. – Т. 10. – №. 2. – С. 024030-02403011.

Anderson R. Polarized light examination and photography of the skin / R. R. Anderson. // Archives of dermatology. – 1991. – №127. – С. 1000–1005.

S. N. Savenkov, V. V. Marienko. Classification and recognition method of objects based on their anisotropy properties, SPIE Proc. — 1995. — N. 2490. — P. 103—107.

Jacques S. Imaging skin pathology with polarized light. / S. Jacques, J. Ramella-Roman, K. Lee. // Journal of Biomedical Optics. – 2002. – №7. – С. 329–340.

Gil J. J. Characteristic properties of Mueller matrices / J. J. Gil // JOSA A. – 2000. – Т. 17. – №. 2. – С. 328-334.

Kostinski A. B. Constraints on Mueller matrices of polarization optics / A. B. Kostinski, C. R. Givens, J. M. Kwiatkowski // Appl. Optics. — 1993. — №9. — Р. 1646—1651.

R. U. Rovira, S. V. Pavlov, Monte Carlo simulation for studying the propagation of polarized light in biological tissue / Optical-electronic information and energy technologies. – 2014. – No. 2 (28). – pp. 56-61. – ISSN 1681-7893.

Wójcik, W., Pavlov, S., Kalimoldayev, M. (2019). Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages, https://doi.org/10.1201/ 9780429057618. eBook ISBN 9780429057618.

Rovira R. H. Particular Aspects of the Use of Videopolarimetric Technology for Dermatological Study, Measuring and computing equipment in technological processes. – 2014. – №. 3 (48). – P. 115-119. – ISSN 2219-9365.

S. V. Pavlov, T. I. Koslovskaya, R. H. Rovira. Design and Automation of a Videopolarimetry System for the analyzing of the Polarization Properties of a Biological Sample, Measuring and computing equipment in technological processes. – 2014. – №. 4 (49). – P. 158-161. – ISSN 2219-9365.

R. H. Rovira, S. V. Pavlov, O. D. Azarov, A. S. Kaminsky. Research of Optical Properties of Biotissue on the Basis of Numeral Modeling of Photons Transport, Photobiology and photomedicine.. - 2012. - Т. IХ. – № 1,2. – P. 127 - 130. – ISSN 2076-0612.

Downloads

Abstract views: 37

Published

2024-07-19

How to Cite

[1]
V. Pavlov, J. R. H. Rovira, N. Zabolotna, V. Kholin, L. E. Nykyforova, and O. Komarova, “Simulation of photon migration process in the biological environment”, Опт-ел. інф-енерг. техн., vol. 47, no. 1, pp. 177–186, Jul. 2024.

Issue

Section

Biomedical Optical And Electronic Systems And Devices

Metrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)

1 2 > >>