Modeling the ranking process in the neural network classifier of objects
DOI:
https://doi.org/10.31649/1681-7893-2024-48-2-128-134Keywords:
ranking, neural network classifier of objects, medical diagnosisAbstract
As part of expert systems for various purposes, one of the basic ones is the decision support subsystem, which, in turn, requires the need for a procedure for classifying ob-jects. This is especially evident in intelligent medical diagnostic systems, which widely use artificial intelligence methods and tools. In this context, an approach involving mod-ern neurotechnology methods has proven to be effective at a high level. This paper con-siders a variant of the structural organization of a neural network classifier of objects as an improved model of the Hamming neural network. The peculiarity of this variant of the classifier is the expansion of its functionality by forming the ranks of the classified ob-ject in all defined classes. In the case of medical diagnosis, this means ranking all possi-ble diagnoses of a disease, i.e. determining not only the most likely diagnosis, but also the closest in rank to it. In fact, this will allow us to clarify the diagnosis, and thus im-prove the results of medical diagnosis. Accordingly, we simulated the classification pro-cess with the ranking of results, which corresponds to the classification with the realiza-tion of competition between the neurons of the competitive layer using negative-reverse (lateral) connections. This approach is basic in the theory of neural networks for deter-mining the winning neuron according to the WTA (Winner Takes All). Simulation model-ing of the classification variant was performed using specific biomedical data (eight symptoms) for the diagnosis of appendicitis (four diagnoses). The results of modeling the processes of neural network classification of objects with the formation of appropri-ate ranks are presented in the form of a table. They confirmed the correctness of the functioning algorithm for the considered classification model.
References
Haykin S., Neural networks, A ComprehensiveFoundation, Second ed. Prantice Hall, Upper Saddle River, NJ, 1999.
Jones М. T., All Application Programming. Charles River Media, Inc, 2003.
Gawlikowski, Jakob & Tassi, Cedrique & Ali, Mohsin & Lee, Jongseok & Humt, Matthias & Feng, Jianxiang & Kruspe, Anna & Triebel, Rudolph & Jung, Peter & Roscher, Ribana & Shahzad, Muhammad & Yang, Wen & Bamler, Richard & Zhu, Xiao, “A survey of uncertainty in deep neural networks”, Artificial Intelligence Review. 56. 1-77. (2023). 10.1007/s10462-023-10562-9.
Kupershtein L., Martyniuk T., etc. (2016). Neural network approach in the stroke diagnosis, Proceedings of the 2016 IEEE 1st International Conference on Data Mining and Processing, DSMP 23-27 Aug. 2016. DOI: 10.1109/DSMP.2016.7583525.
Aldape-Perez, M., Yanez-Marquez, C., Camacho-Nieto, O., & J Arguelles-Cruz, A. (2012). An associative memory approach to medical decision support systems, Computer methods and programs in biomedicine, 106(3), p. 287–307. https://doi.org/10.1016/j.cmpb.2011.05.002.
Malhotra, Priyanka & Gupta, Sheifali & Koundal, Deepika & Zaguia, Atef & Enbeyle, Wegayehu. (2022). Deep Neural Networks for Medical Image Segmentation”, Journal of Healthcare Engineering. 1-15. 2022.10.1155/2022/9580991.
Kshatri, Sapna & Singh, Deepak, “Convolutional Neural Network in Medical Image Analysis: A Review”, Archives of Computational Methods in Engineering. 30. 2023. 10.1007/s11831-023-09898-w.
Landman, Jonas & Mathur, Natansh & Li, Yun & Strahm, Martin & Kazdaghli, Skander & Prakash, Anupam & Kerenidis, Iordanis, “Quantum Methods for Neural Networks and Application to Medical Image Classification”. Quantum. 6. 881. 2022) 10.22331/q-2022-12-22-881.
Rangaraj M. Rangayyan, Biomedical Signal Analysis. Second ed. Wiley-IEEE Press, 2015.
В. Вуйцік, О.З.Готра, та В.В. Григор’єв, Експертні системи. Львів, Україна: Ліга-Прес, 2006.
Yashbir & Farrelly, Colleen & Hathaway, Quincy & Choudhary, Ashok & Carlsson, Gunnar & Erickson, Bradley & Leiner, Tim, (2023). The Role of Geometry in Convolutional Neural Networks for Medical Imaging”, Mayo Clinic Proceedings: Digital Health. Volume 1, Issue 4. P. 451-642. 10.1016/j.mcpdig.2023.08.006.
Callan R., The Essence of Neural Networks. Prantice Hall Europe, NY, 1999.
S. Osowski, Sieci neuronowe do przetwarzania informacji. Oficyna Wydawnicza Politechniki War-szawskiej, 2013.
Martyniuk T.B., Kupershtein L.M., Medvid A.V.,. Kozhemiako A.V, Wojcik W., and Yuchshenko O. (2012). Applications of Discriminant Analysis Methods in Medical Diagnostics», Optical Fibers and Their Applications: Proceedings of SPIE 8698, 86980.
Xiaozhou Yang, Linear Discriminant Analysis, Explained”. Available at: https://towardsdatascience.com/linear-discriminant-analysis-explained-f88be6c1e00b (аccessed 5.10.2020).
Wójcik W., Pavlov S., Kalimoldayev M. (2019). Information Technology in Medical Diagnostics II. London: Taylor & Francis Group, CRC Press, Balkema book, 336 Pages.
Wójcik Waldemar, Smolarz Andrzej (2017). Information Technology in Medical Diagnostics, July 11, 2017 by CRC Press, 210 Pages.
Highly linear Microelectronic Sensors Signal Converters Based on Push-Pull Amplifier Circuits / edited by Waldemar Wojcik and Sergii Pavlov, Monograph, (2022) NR 181, Lublin, Comitet Inzynierii Srodowiska PAN, 283 Pages. ISBN 978-83-63714-80-2
Pavlov Sergii, Avrunin Oleg, Hrushko Oleksandr, and etc. (2021). System of three-dimensional human face images formation for plastic and reconstructive medicine // Teaching and subjects on bio-medical engineering Approaches and experiences from the BIOART-project Peter Arras and David Luengo (Eds.), , Corresponding authors, Peter Arras and David Luengo. Printed by Acco cv, Leuven (Belgium). - 22 P. ISBN: 978-94-641-4245-7.
Pavlov S.V., Avrunin O.G., etc. (2019). Intellectual technologies in medical diagnosis, treatment and rehabilitation: monograph / [S. In edited by S. Pavlov, O. Avrunin. - Vinnytsia: PP "TD "Edelweiss and K", 260 p. ISBN 978-617-7237-59-3.
Romanyuk, O., Zavalniuk, Y., Pavlov, S., etc. (2023). New surface reflectance model with the combi-nation of two cubic functions usage, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, , 13(3), pp. 101–106
Kukharchuk, Vasyl V., Sergii V. Pavlov, Volodymyr S. Holodiuk, Valery E. Kryvonosov, Krzysztof Skorupski, Assel Mussabekova, and Gaini Karnakova. (2022). "Information Conversion in Measuring Channels with Optoelectronic Sensors" Sensors 22, no. 1: 271. https://doi.org/10.3390/s22010271.
Vasyl V. Kukharchuk, Sergii V. Pavlov, Samoil Sh. Katsyv, and etc. (2021). Transient analysis in 1st order electrical circuits in violation of commutation laws”, Przegląd elektrotechniczny, ISSN 0033-2097, R. 97 NR 9/2021, p. 26-29, doi:10.15199/48.2021.09.05.
Downloads
-
pdf (Українська)
Downloads: 0
Published
How to Cite
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).