Analysis of optical methods for blood sugar determination
DOI:
https://doi.org/10.31649/1681-7893-2024-48-2-212-221Keywords:
optical coherence tomography, infrared radiation, Raman spectroscopy, terahertz spectroscopy, fluorescence spectroscopy, polarimetry, oxyhemoglobin spectroscopy, non-invasive monitoring, glucose level, diabetesAbstract
The article discusses promising optical methods for non-invasive blood glucose monitoring, in particular, optical coherence tomography (OCT), near-infrared (NIR), Raman spectroscopy, terahertz spectroscopy (THz), fluorescence spectroscopy, polarimetry, and oxyhemoglobin spectroscopy. The principles of each method, their advantages and limitations are described. Modern technological advances aimed at improving the accuracy, efficiency and convenience of these methods for clinical use, especially in the context of monitoring patients with diabetes, are considered.
References
Huang, D., Swanson, E. A., Lin, C. P., Schuman, J. S., Stinson, W. G., Chang, W., Hee, M. R., Flotte, T., Gregory, K., Puliafito, C. A., & Fujimoto, J. G. (1991). Optical coherence tomography. Science, 254(5035), 1178-1181.
Drexler, W., & Fujimoto, J. G. (Eds.). (2008). Optical Coherence Tomography: Technology and Applications. Springer Science & Business Media.
Fercher, A. F., Hitzenberger, C. K., Kamp, G., & Elzaiat, S. Y. (1995). Measurement of intraocular distances by backscattering spectral interferometry. Optics Communications, 117(1-2), 43-48
Yudovsky, D., & Pilon, L. (2010). Rapid and accurate estimation of blood glucose concentration using diffuse reflectance near-infrared spectroscopy. Journal of Biomedical Optics, 15(3), 037005.
Tuchin, V. V. (2007). Optical biomedical diagnostics. SPIE Press.
Harrison, D. K., & Chance, B. (1991). Near-infrared spectroscopy of the brain: topographic mapping of NIR changes in local oxygenation. Journal of Applied Physiology, 70(3), 1405-1412.
Okawa, S., Kikuchi, M., Nakamura, K., & Yamanari, M. (2012). Combination of Raman and near-infrared spectroscopy for noninvasive blood glucose measurement. Optics Letters, 37(10), 1630-1632.
Berger, A. J., Itzkan, I., & Feld, M. S. (1999). Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy. Spectroscopy, 14(2), 32-37.
Shao, J., & Jiang, W. (2012). Recent advances in Raman spectroscopic techniques for blood glucose measurement. Journal of Biomedical Optics, 17(10), 100901.
Kneipp, K., Haka, A. S., Kneipp, H., Shafer-Peltier, K. E., Motz, J. T., & Dasari, R. R. (2002). Surface-enhanced Raman spectroscopy in cancer diagnosis, prognosis, and surgical guidance. Analytical Chemistry, 74(17), 5274-5282.
Yuen, J. M., Shah, N. C., Walsh, J. T., Glucksberg, M. R., & Van Duyne, R. P. (2011). Transcutaneous glucose sensing by surface-enhanced spatially offset Raman spectroscopy in a rat model. Analytical Chemistry, 83(10), 4584-4591.
Gowen, A. A., O'Sullivan, C., & O'Donnell, C. P. (2012). Terahertz time domain spectroscopy and imaging: Emerging techniques for food process monitoring and quality control. Trends in Food Science & Technology, 25(1), 40-46.
Taday, P. F. (2004). Applications of terahertz spectroscopy to pharmaceutical sciences. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 362(1815), 351-364.
Nagel, M., Haring Bolivar, P., Brucherseifer, M., Kurz, H., Bosserhoff, A., & Bürklein, M. (2003). Integrated THz technology for label-free genetic diagnostics. Applied Physics Letters, 80(1), 154-156.
Kawase, K., Shikata, J., & Suizu, K. (2003). Terahertz wave applications in chemical analysis. TrAC Trends in Analytical Chemistry, 22(7), 528-536.
Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy. Springer Science & Business Media.
Wolfbeis, O. S. (2008). An overview of nanoparticles commonly used in fluorescent bioimaging. Chemical Society Reviews, 37(12), 2532-2542.
Herman, P., Lakowicz, J. R., & Gryczynski, I. (2001). DNA-intercalated thiazole orange as a fluorescent sensor for glucose. Biochemical and Biophysical Research Communications, 281(3), 669-672.
Borisov, S. M., & Wolfbeis, O. S. (2010). Optical biosensors. Chemical Reviews, 110(6), 3290-3302.
Kaminsky, W., Claborn, K., & Kahr, B. (2004). Polarimetry. In Encyclopedia of Analytical Chemistry. John Wiley & Sons, Ltd.
Coté, G. L., & Lec, R. M. (2002). Noninvasive optical polarimetric glucose sensing using a true phase-modulated ellipsometer. IEEE Transactions on Biomedical Engineering, 49(11), 1277-1282.
Coté, G. L., Fox, M. D., & Northrop, R. B. (2003). Noninvasive optical polarimetric blood glucose sensing. IEEE Engineering in Medicine and Biology Magazine, 22(1), 59-65.
Beuthan, J., Minet, O., Helfmann, J., Herrig, M., & Müller, G. (1996). The spatial variation of the refractive index in biological cells and its influence on light scattering. Physics in Medicine & Biology, 41(3), 369-382.
Spigulis, J., Gailite, L., Lihachev, A., & Erts, R. (2010). Simultaneous recording of skin blood pulsations at different vascular depths by multi-wavelength photoplethysmography. Applied Optics, 49(10), 1705-1709.
Boushel, R., Langberg, H., Olesen, J., Gonzales-Alonso, J., Bülow, J., & Kjaer, M. (2001). Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. Scandinavian Journal of Medicine & Science in Sports, 11(4), 213-222.
Jobsis, F. F. (1977). Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science, 198(4323), 1264-1267.
Pavlenko Yu. IN. and Tuzhansky S. (2019). Photometric method and device for monitoring the glucose level of patients with diabetes, Opt-el. inf-energy tech., vol. 37, issue 1, p. 63–68.
Kakihana, Y., Matsunaga, A., & Shimizu, K. (2005). Near-infrared spectroscopy as a monitoring tool for determining tissue oxygenation. Journal of Clinical Monitoring and Computing, 19(6), 411-416.
Avrunin, O.G., Alkhorayef, M., Saied, H.F.I., and Tymkovych, M.Y., "The surgical navigation system with optical position determination technology and sources of errors," Journal of Medical Imaging and Health Informatics, 5(4), 689-696 (2015).
Wójcik Waldemar, Smolarz Andrzej (2017). Information Technology in Medical Diagnostics, July 11, 2017 by CRC Press, 210 Pages.
Highly linear Microelectronic Sensors Signal Converters Based on Push-Pull Amplifier Circuits / edited by Waldemar Wojcik and Sergii Pavlov, Monograph, (2022) NR 181, Lublin, Comitet Inzynierii Srodowiska PAN, 283 Pages. ISBN 978-83-63714-80-2
Pavlov Sergii, Avrunin Oleg, Hrushko Oleksandr, and etc. (2021). System of three-dimensional human face images formation for plastic and reconstructive medicine // Teaching and subjects on bio-medical engineering Approaches and experiences from the BIOART-project Peter Arras and David Luengo (Eds.), Corresponding authors, Peter Arras and David Luengo. Printed by Acco cv, Leuven (Belgium). - 22 P. ISBN: 978-94-641-4245-7.
Pavlov S.V., Avrunin O.G., etc. (2019). Intellectual technologies in medical diagnosis, treatment and rehabilitation: monograph / [S. In edited by S. Pavlov, O. Avrunin. - Vinnytsia: PP "TD "Edelweiss and K", 260 p. ISBN 978-617-7237-59-3.
Romanyuk, O., Zavalniuk, Y., Pavlov, S., etc. (2023). New surface reflectance model with the combination of two cubic functions usage, Informatyka, Automatyka, Pomiary w Gospodarce i Ochronie Srodowiska, , 13(3), pp. 101–10
Kukharchuk, Vasyl V., Sergii V. Pavlov, Volodymyr S. Holodiuk, Valery E. Kryvonosov, Krzysztof Skorupski, Assel Mussabekova, and Gaini Karnakova. (2022). "Information Conversion in Measuring Channels with Optoelectronic Sensors" Sensors 22, no. 1: 271. https://doi.org/10.3390/s22010271.
Vasyl V. Kukharchuk, Sergii V. Pavlov, Samoil Sh. Katsyv, and etc. (2021). Transient analysis in 1st order electrical circuits in violation of commutation laws”, Przegląd elektrotechniczny, ISSN 0033-2097, R. 97 NR 9/2021, p. 26-29, doi:10.15199/48.2021.09.05.
Pavlov S.V, Petruk V.G., Kolesnik P.F. (2007). Photoplethysmohrafic technologies of the cardiovascular control: monography, Vinnitsa: Universum-Vinnitsa, 254 p.
Wójcik W, Mezhiievska I, Pavlov SV, Lewandowski T, Vlasenko OV, Maslovskyi V, Volosovych O, Kobylianska I, Moskovchuk O, Ovcharuk V, et al. (2023). Medical Fuzzy-Expert System for Assessment of the Degree of Anatomical Lesion of Coronary Arteries. International Journal.
Pavlov SV, Kozhemiako VP, Petruk VG, Kolesnik PF. (2007). Photoplethysmohrafic technologies of the cardiovascular control, Vinnitsa: Universum-Vinnitsa, 254 p.
Downloads
-
pdf (Українська)
Downloads: 17
Published
How to Cite
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).