Experimental study of a determinative chaos generator based on a transistor structure
DOI:
https://doi.org/10.31649/1681-7893-2025-49-1-235-246Keywords:
deterministic chaos generator, auto-oscillator, deterministic chaos, transistor structure, negative differential resistanceAbstract
The work presents an experimental study of a new circuit solution for a deterministic chaos generator based on a bipolar transistor structure with negative differential resistance. This chaos generator system has three dynamic variables: the voltage on the equivalent capacitance of the transistor structure between the collectors of the first and second bipolar transistors, and the third is the current flowing through the inductance of the oscillatory circuit. The dynamic processes of deterministic chaos are determined by the reactive properties of the transistor structure with negative differential resistance. Experimental studies were conducted from low frequencies to microwave frequencies to determine the optimal operating frequencies for various tasks of using the developed device. The I-V characteristic, the Smith chart of the S11 parameter, the S11 impedance, the active and reactive components of the impedance, the equivalent capacitance and inductance, and the SWR of the chaos generator based on two bipolar transistors in the frequency range from 15 kHz to 1 GHz were obtained. And also experimental oscillograms of the developed chaos generator were obtained. In comparison with analogues, the proposed and investigated deterministic chaos generator has improved loading capacity and higher speed, has a short time of establishment of stationary oscillations.
References
Magyari A., Chen Y. Review of State-of-the-Art FPGA Applications in IoT Networks. Sensors 2022, 22, 7496.
Hussain F., Hussain R., Hassan S.A., Hossain E. Machine Learning in IoT Security: Current Solutions and Future Challenges. IEEE Commun. Surv. Tutorials 2020, 22, 1686–1721.
Dridi, F.; El Assad, S.; El Hadj Youssef, W.; Machhout, M.; Lozi, R. The Design and FPGA-Based Implementation of a Stream Cipher Based on a Secure Chaotic Generator. Appl. Sci. 2021, 11, 625.
Wang, X.Y.; Zhang, J.J.; Zhang, F.C.; Cao, G.H. New chaotical image encryption algorithm based on Fisher–Yatess scrambling and DNA coding. Chin. Phys. B 2019, 28, 040504.
Belazi, A.; Abd El-Latif, A.A.; Belghith, S. A novel image encryption scheme based on substitution-permutation network and chaos. Signal Process. 2016, 128, 155–170.
Datcu, O.; Macovei, C.; Hobincu, R. Chaos based cryptographic pseudo-random number generator template with dynamic state change. Appl. Sci. 2020, 10, 451.
Thakor, V.A.; Razzaque, M.A.; Khandaker, M.R. Lightweight cryptography algorithms for resource-constrained IoT devices: A review, comparison and research opportunities. IEEE Access 2021, 9, 28177–28193.
Sidiropoulos A, Konstantinidis D, Karamanos X, Mastos T, Apostolou K, Chatzis T, Papaspyropoulou M, Marini K, Karamitsos G, Theodoridou C, et al. A Novel Autonomous Robotic Vehicle-Based System for Real-Time Production and Safety Control in Industrial Environments. Computers. 2025; 14(5):188.
Sulaiman, A.G. Overview of ZUC Algorithm and its Contributions on the Security Success and Vulnerabilities of 4G Mobile Communication. Int. J. Comput. Appl. 2017, 975, 8887.
Ming, T.; PingPan, C.; ZhenLong, Q. Differential Power Analysis on ZUC Algorithm. Cryptol. Eprint Arch. (2023).
Dridi, F.; El Assad, S.; El Hadj Youssef, W.; Machhout, M.; Lozi, R. The Design and FPGA-Based Implementation of a Stream Cipher Based on a Secure Chaotic Generator. Appl. Sci. 2021, 11, 625.
Pareek, N.K.; Patidar, V.; Sud, K.K. Image encryption using chaotic logistic map. Image Vis. Comput. 2006, 24, 926–934.
François, M.; Grosges, T.; Barchiesi, D.; Erra, R. Pseudo-random number generator based on mixing of three chaotic maps. Commun. Nonlinear Sci. Numer. Simul. 2014, 19, 887–895.
Semenov A. O., Osadchuk O. V. Deterministic chaos generator with inertial nonlinearity based on a bipolar transistor structure with negative resistance. Bulletin of the Vinnytsia Polytechnic Institute. 2017. No. 6. pp. 147–152.
Andriy O. Semenov, Alexander V. Osadchuk, Iaroslav A. Osadchuk, Kosty-antyn O. Koval, Maksym O. Prytula. The Chaos Oscillator with Inertial Non-Linearity Based on a Transistor Structure with Negative Resistance. 17th International Conference of Young Specialists on Micro/Nanotechnologies and Electron Devices EDM 2016. Erlagol, Altai, Russia, 30 June – 4 July, 2016. Conference Proceedings, 2016. – P. 178–184.
Lin Y., Xie Z., Chen T., Cheng X., Wen H. Image privacy protection scheme based on high-quality reconstruction DCT compression and nonlinear dynamics. Expert Syst. Appl. 2024, 257, 124891.
Litvinenko A., Aboltins A., Pikulins D., Eidaks J. Frequency Modulated Chaos Shift Keying System for Wireless Sensor Network. In Proceedings of the 2020 Signal Processing Workshop, SPW, Warsaw, Poland, 5–7 October 2020.
Petrzela J., Chaotic States of Transistor-Based Tuned-Collector Oscillator. Mathematics 2023, 11, 2213.
Wang, L.; Wang, C.; Zhang, H.; Ma, P.; Zhang, S. Estimation-Correction Modeling and Chaos Control of Fractional-Order Memristor Load Buck-Boost Converter. Complex Syst. Model. Simul. 2024, 4, 67–81
Zhang, C.; Zhang, S.; Liang, K.; Chen, Z. Double Image Encryption Algorithm Based on Parallel Compressed Sensing and Chaotic System. IEEE Access 2024, 12, 54745–54757.
Kumar Thukral, M. SCLLCM: A Robust One Dimesional Chaotic Map for Image Encryption Application. In Proceedings of the 2024 Asia Pacific Conference on Innovation in Technology (APCIT), Mysore, India, 26–27 July 2024; pp. 1–5.
Zhang, J.; Qi, L. Detection of Weak Signals Based on the Duffing Chaotic System and FPGA Implementation. In Proceedings of the 2024 5th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), Nanjing, China, 29–31 March 2024; pp. 2212–2218.
Anzo-Hernández A, Zambrano-Serrano E, Platas-Garza MA, Volos C. Dynamic Analysis and FPGA Implementation of Fractional-Order Hopfield Networks with Memristive Synapse. Fractal and Fractional. 2024; 8(11):628.
Petrzela J., Chaotic States of Transistor-Based Tuned-Collector Oscillator. Mathematics 2023, 11, 2213.
Petrzela J., Polak L. Minimal realizations of autonomous chaotic oscillators based on trans-immittance filters. IEEE Access 2019, 7, 17561–17577.
Osadchuk O.V., Osadchuk I.O., Semenov A.O. The Mathematical Model of Radio-measuring Frequency Transducer of Optical Radiation Based on MOS Transistor Structures with Negative Differential Resistance. Journal of Nano- and Electronic Physics. Scientific journal. Vol. 13 No 4, 04001(6 pp). 2021.
Osadchuk O.V., Osadchuk V.S., Osadchuk I.A. Mathematical Model of a Frequency Pressure Transducer Based on a Resonant Tunneling Diode. Physics and chemistry of solid state. V.23, No. 2 (2022) pp.277-284.
Osadchuk I.A., Osadchuk O.V., Osadchuk V.S., Semenov A.O. Optical Sensor with Frequency Output Based on Resonant Tunneling Diode. Proceedings - 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering, TCSET 2022, 2022, pp. 442-446.
Osadchuk V., Osadchuk A., Semenov A., Osadchuk I., Semenova O., Baraban S., Prytula M.. Radiomeasuring Optical-Frequency Transducers Based on Reactive Properties of Transistor Structures with Negative Differential Resistance. Data-Centric Business and Applications ICT Systems-Theory, Radio-Electronics, Information Technologies and Cybersecurity, (Volume 5). Chapter 12. Springer International Publishing. Cham. Editors: Tamara Radivilova, Dmytro Ageyev, Natalia Kryvinska. 2020, pp.229-261.
Downloads
-
pdf (Українська)
Downloads: 5
Published
How to Cite
Issue
Section
License
Автори, які публікуються у цьому журналі, погоджуються з наступними умовами:- Автори залишають за собою право на авторство своєї роботи та передають журналу право першої публікації цієї роботи на умовах ліцензії Creative Commons Attribution License, котра дозволяє іншим особам вільно розповсюджувати опубліковану роботу з обов'язковим посиланням на авторів оригінальної роботи та першу публікацію роботи у цьому журналі.
- Автори мають право укладати самостійні додаткові угоди щодо неексклюзивного розповсюдження роботи у тому вигляді, в якому вона була опублікована цим журналом (наприклад, розміщувати роботу в електронному сховищі установи або публікувати у складі монографії), за умови збереження посилання на першу публікацію роботи у цьому журналі.
- Політика журналу дозволяє і заохочує розміщення авторами в мережі Інтернет (наприклад, у сховищах установ або на особистих веб-сайтах) рукопису роботи, як до подання цього рукопису до редакції, так і під час його редакційного опрацювання, оскільки це сприяє виникненню продуктивної наукової дискусії та позитивно позначається на оперативності та динаміці цитування опублікованої роботи (див. The Effect of Open Access).