Intelligent echocardiographic image processing systems for assessing the functional state of the heart

Authors

  • S. Pashkovskiy Military Medical Clinical Center of the Central Region
  • Y. Pylypets Vinnytsia National Technical University
  • S. Pavlov Vinnytsia National Technical University
  • Y. Yaroslavskyy Odesa Polytechnic National University
  • O. Volosovych Vinnytsia National Technical University

DOI:

https://doi.org/10.31649/1681-7893-2025-49-1-193-199

Keywords:

echocardiography, biomedical imaging, deep learning, convolutional neural networks, image processing, cardiac pathologies, transfer learning, artificial intelligence, cardiac diagnostics, phase space

Abstract

Ultrasound images of the heart are an important source of diagnostic information for the detection of cardiovascular diseases. Today, automated processing and analysis of such images are actively studied in the fields of telemedicine, digital medical image processing, and artificial intelligence, in particular, to accelerate and accurately diagnose cardiac pathologies. This paper considers a new approach to processing echocardiographic data, which involves converting ultrasound videos or series of images into color phase space projections. This allows you to create informative visual representations suitable for analysis using deep convolutional neural networks. This approach has two key advantages: [1] it provides the ability to use modern deep learning architectures for the recognition of cardiac pathologies, [2] it allows the use of transfer learning techniques, which significantly increases the efficiency of the model even on small data sets.

Author Biographies

S. Pashkovskiy, Military Medical Clinical Center of the Central Region

Candidate of Medical Sciences, Colonel of the Medical Service

Y. Pylypets, Vinnytsia National Technical University

postgraduate

S. Pavlov, Vinnytsia National Technical University

Doctor of Technical Sciences, Professor

Y. Yaroslavskyy, Odesa Polytechnic National University

Ph.D., Senior Lecturer

O. Volosovych, Vinnytsia National Technical University

postgraduate

References

Natsheh, Q.; S ˘al ˘agean, A.; Zhou, D.; Edirisinghe, E. Automatic Selective Encryption of DICOM Images. Appl. Sci. 2023, 13, 4779. https://doi.org/10.3390/ app13084779

Monika, R.; Dhanalakshmi, S.; Rajamanickam, N.; Yousef, A.; Alroobaea, R. Coefficient-Shuffled Variable Block Compressed Sensing for Medical Image Compression in Telemedicine Systems. Bioengineering 2024, 11, 1101. https://doi.org/ 10.3390/bioengineering11111101

Lin, C.-C.; Lin, Y.-H.; Chu, E.-T.; Tai, W.-L.; Lin, C.-J. VUF-MIWS: A Visible and User-Friendly Watermarking Scheme for Medical Images. Electronics 2025, 14, 122. https://doi.org/10.3390/ electronics14010122

Ferreira, F.; Pires, I.M.; Ponciano, V.; Costa, M.; Villasana, M.V.; Garcia, N.M.; Zdravevski, E.; Lameski, P.; Chorbev, I.; Mihajlov, M.; et al. Experimental Study on Wound Area Measurement with Mobile Devices. Sensors 2021, 21, 5762. https://doi.org/10.3390/s21175762

Eric J. Topol : High-performance medicine: the convergence of human and artificial intelligence. Nature Medicine? 2019, 25, 44-56. https://gwern.net/doc/ai/nn/2019-topol.pdf

Harimi, A.; Majd, Y.; Gharahbagh, A.A.; Hajihashemi, V.; Esmaileyan, Z.; Machado, J.J.M.; Tavares, J.M.R.S. Classification of Heart Sounds Using Chaogram Transform and Deep Convolutional Neural Network Transfer Learning. Sensors 2022, 22, 9569. https:// doi.org/10.3390/s22249569

Lesport, Q.; Joerger, G.; Kaminski, H.J.; Girma, H.; McNett, S.; Abu-Rub, M.; Garbey, M. Eye Segmentation Method for Telehealth: Application to the Myasthenia Gravis Physical Examination. Sensors 2023, 23, 7744. https://doi.org/10.3390/ s23187744

Harun-Ar-Rashid, M.; Chowdhury, O.; Hossain, M.M.; Rahman, M.M.; Muhammad, G.; AlQahtani, S.A.; Alrashoud, M.; Yassine, A.; Hossain, M.S. IoT-Based Medical Image Monitoring System Using HL7 in a Hospital Database. Healthcare 2023, 11, 139. https:// doi.org/10.3390/healthcare11010139

Ferreira, F.; Pires, I.M.; Ponciano, V.; Costa, M.; Villasana, M.V.; Garcia, N.M.; Zdravevski, E.; Lameski, P.; Chorbev, I.; Mihajlov, M.; et al. Experimental Study on Wound Area Measurement with Mobile Devices. Sensors 2021, 21, 5762. https://doi.org/10.3390/s21175762

Zanella A, Bui N, Castellani A et al. (2014) Internet of things for smart cities. IEEE Internet of Things Journal 1(1): 22-32. 6. Zeng Y, Zhang L, Gupta P (2019) Internet of things (IoT) in healthcare: A comprehensive survey on trends and advances. IEEE Access 7: 115365-115381.

Nedadur R, Wang B, Tsang WArtificial intelligence for the echocardiographic assessment of valvular heart diseaseHeart 2022;108:1592-1599

Jiang, L., Zuo, H. J., & Chen, C. (2025). Artificial intelligence in echocardiography: Applications and future directions. Fundamental Research. https://doi.org/10.1016/j.fmre.2025.01.020

Labs, R. B., Zolgharni, M., & Loo, J. P. (n.d.). Echocardiographic image quality assessment using deep neural networks. School of Computing and Engineering, University of West London; National Heart and Lung Institute, Imperial College, London, UK.

Liu, W., Wang, Q., Zhang, P., Deng, Y., Zhao, Y., Zhang, Y., Xu, H., Qiu, X., Chen, X., Xu, J., & He, K. (2025). Automated echocardiogram image quality assessment with YOLO and ResNet in the left ventricular myocardium of A4C views. Applied Intelligence, 55, Article 513. https://doi.org/10.1007/s10489-025-06419-z

Ivanushkina, N. H., & Ivanko, K. O. (2014). Digital processing of low-amplitude components of electrocardiosignals. Mykolaiv: FOP Shvets V. D.

Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.

Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.

Y. Pylypets, S. Pavlov, Y. Yaroslavsky, S. Kostyuk, and M. Ursan, “Features of the application of telemedical technologies based on artificial intelligence in disaster medicine,” Opt-el. inf-energ. tech., vol. 48, no. 2, pp. 190–195, Nov 2024.

Downloads

Abstract views: 2

Published

2025-06-18

How to Cite

[1]
S. Pashkovskiy, Y. Pylypets, S. Pavlov, Y. Yaroslavskyy, and O. Volosovych, “Intelligent echocardiographic image processing systems for assessing the functional state of the heart”, Опт-ел. інф-енерг. техн., vol. 49, no. 1, pp. 193–199, Jun. 2025.

Issue

Section

Biomedical Optical And Electronic Systems And Devices

Metrics

Downloads

Download data is not yet available.