Full-life 3D models as an effective tool for practitioning skills of rhinoendoscopic interventions

Authors

  • A.O. Sokoltsov Kharkiv National University of Radio Electronics
  • I.V. Kandaurov Kharkiv National University of Radio Electronics
  • B.V. Pryvalov Kharkiv National University of Radio Electronics
  • T.V. Nosova Kharkiv National University of Radio Electronics
  • N.O. Shushliapina Kharkiv National University of Radio Electronics
  • Ya.V. Nosova Kharkiv National University of Radio Electronics
  • L.O. Averianova Kharkiv National University of Radio Electronics
  • O.G. Avrunin Kharkiv National University of Radio Electronics

DOI:

https://doi.org/10.31649/1681-7893-2025-50-2-233-243

Keywords:

3D printing, anatomical models, rhinoendoscopy, simulation-based training, CT segmentation, OSATS, surgical skills, functional endoscopic sinus surgery

Abstract

The article presents an approach to developing and applying realistic 3D-printed anatomical models for training skills in rhinoendoscopic procedures. The methodology for acquiring and segmenting tomographic data, generating slice-based models, and fabricating them using additive technologies is described. Special attention is given to evaluating the effectiveness of the models in surgical training, including the ability to objectively assess technical performance using standardized tools such as OSATS. The results demonstrate reduced procedure time, improved accuracy of manipulations, and increased preparedness among otolaryngology trainees. The advantages of personalized 3D models, their role in simulation-based education, and future prospects for their integration into clinical practice are discussed.

Author Biographies

A.O. Sokoltsov, Kharkiv National University of Radio Electronics

аспірант

I.V. Kandaurov, Kharkiv National University of Radio Electronics

аспірант

B.V. Pryvalov, Kharkiv National University of Radio Electronics

аспірант

T.V. Nosova, Kharkiv National University of Radio Electronics

PhD, доцент

N.O. Shushliapina, Kharkiv National University of Radio Electronics

PhD, доцент

Ya.V. Nosova, Kharkiv National University of Radio Electronics

PhD, доцент

L.O. Averianova, Kharkiv National University of Radio Electronics

PhD, доцент

O.G. Avrunin, Kharkiv National University of Radio Electronics

д.т.н., професор

References

Modern technologies of phantom modeling in neurosurgery as a type of simulation training of neurosurgeons / V. O. Pyatikop, O. G. Avrunin, M. Yu. Tymkovych, I. O. Kutovy, I. O. Polyakh // Simulation training in the system of medical personnel training: materials of educational and methodological conference – Kharkiv: KhNMU, 2016. – P. 136–138.

Computer planning of minimally invasive interventions in ophthalmology and neurosurgery / Avrunin O. G., Filatov V. O., Tymkovych M. Yu., Kukharenko D. V., Pyatikop V. O. – Kharkiv: KhNURE, 2020. – 160 p. DOI: https://doi.org/10.30837/978-966-659-283-8.

Ayub S. M. "See one, do one, teach one": Balancing patient care and surgical training in an emergency trauma department // J. Glob. Health. – 2022. – Vol. 12. – P. 03051. DOI: https://doi.org/10.7189/jogh.12.03051.

Avrunin O. G. et al. Application of 3D printing technologies in building patient-specific training systems for computing planning in rhinology // Information Technology in Medical Diagnostics II. – 2019. – P. 1–8. DOI: https://doi.org/10.1201/9780429057618-1.

Avrunin O. et al. Computed tomography dataset analysis for stereotaxic neurosurgery navigation // Proc. Int. Conf. Advanced Optoelectronics and Lasers (CAOL). – 2019. – P. 606–609. DOI: https://doi.org/10.1109/CAOL46282.2019.9019459.

Tiwari D., Vobilisetty R. K., Heer B. Current Application and Future Prospects of 3D Printing in Otorhinolaryngology // Indian J. Otolaryngol. Head Neck Surg. – 2022. – Vol. 74(1). – P. 123–126. DOI: https://doi.org/10.1007/s12070-021-02634-5.

Meyer-Szary J. et al. The Role of 3D Printing in Planning Complex Medical Procedures and Training of Medical Professionals // Int. J. Environ. Res. Public Health. – 2022. – Vol. 19(6). – P. 3331. DOI: https://doi.org/10.3390/ijerph19063331.

Tikka S. et al. A Feasible, Low-Cost Capsicum and Tomato Model for Endoscopic Sinus and Skull Base Surgery Training // Indian J. Otolaryngol. Head Neck Surg. – 2022. – Vol. 74(Suppl 3). – P. 4565–4570. DOI: https://doi.org/10.1007/s12070-021-02583-z.

De Oliveira H. F. et al. A feasible, low-cost, reproducible lamb’s head model for endoscopic sinus surgery training // PLoS One. – 2017. – Vol. 12(6). – e0180273. DOI: https://doi.org/10.1371/journal.pone.0180273.

Suzuki M. et al. Remote Training of FESS With Advanced 3D Models and Telemedicine System // Front. Surg. – 2021. – Vol. 8. – 746837. DOI: https://doi.org/10.3389/fsurg.2021.746837.

Suzuki M. et al. Repetitive simulation training with novel 3D-printed sinus models // Laryngoscope Investig. Otolaryngol. – 2022. – Vol. 7(4). – P. 943–954. DOI: https://doi.org/10.1002/lio2.873.

Suzuki M. et al. Can high-fidelity 3D models replace cadavers in skill assessment for ESS? // Front. Med. – 2024. – Vol. 11. – 1301511. DOI: https://doi.org/10.3389/fmed.2024.1301511.

Gillanders S. L. et al. Safe surgical training: evaluation of national FESS model course // Ir. J. Med. Sci. – 2023. – Vol. 192(6). – P. 3039–3042. DOI: https://doi.org/10.1007/s11845-023-03309-6.

Schlegel L. E. et al. Understanding the Patient Experience With Personalized 3D Models // Cureus. – 2023. – Vol. 15(2). – e35134. DOI: https://doi.org/10.7759/cureus.35134.

Pettersson A. B. V. et al. Legal issues and underexplored data protection in medical 3D printing // Front. Bioeng. Biotechnol. – 2023. – Vol. 11. – 1102780. DOI: https://doi.org/10.3389/fbioe.2023.1102780.

Varshney R. et al. The McGill simulator for ESS (MSESS): validation study // J. Otolaryngol. Head Neck Surg. – 2014. – Vol. 43(1). – 40. DOI: https://doi.org/10.1186/s40463-014-0040-8.

Avrunin O. G. et al. Study of the air flow mode in the nasal cavity // Proc. SPIE. – 2017. – Vol. 10445. – 104453H. DOI: https://doi.org/10.1117/12.2280941.

Saied H. F. I., Al-Omari A. K., Avrunin O. G. Determination of aerodynamic characteristics of nasal airways // Advances in Intelligent and Soft Computing. – 2011. – Vol. 102. – P. 311–322. DOI: https://doi.org/10.1007/978-3-642-23154-4_35.

Avrunin O. G. et al. Principles of computer planning in functional nasal surgery // Przegląd Elektrotechniczny. – 2017. – Vol. 93(3). – P. 140–143. DOI: https://doi.org/10.15199/48.2017.03.32.

Avrunin O. G. et al. Image Segmentation of the Upper Respiratory Tract // Proc. ELNANO 2019. – P. 485–488. DOI: https://doi.org/10.1109/ELNANO.2019.8783739.

Nosova Y. V. et al. Pre-Processing of Tomographic Images for Segmentation of Paranasal Sinuses // Proc. ELNANO 2019. – P. 489–492. DOI: https://doi.org/10.1109/ELNANO.2019.8783713.

Chatterjee S. et al. Classification of brain tumours in MR images using deep spatiospatial models // Sci. Rep. – 2022. – Vol. 12. – 1505. DOI: https://doi.org/10.1038/s41598-022-05572-6.

Mzoughi H. et al. Deep multi-scale 3D CNN for glioma classification // J. Digit. Imaging. – 2020. – Vol. 33. – P. 903–915.

He K. et al. Deep residual learning for image recognition // Proc. CVPR. – 2016. – P. 770–778.

Pavlov S. V., Avrunin O. G., Zlepko S. M., Bodiansky E. V., Kolisnyk P. F., Lysenko O. M., Chaykovsky I. A., Filatov V. O. Intelligent technologies in medical diagnostics, treatment and rehabilitation: monograph. Vinnytsia: PP "TD "Edelweiss and K", 2019. 260 p.

Kozhemʼyako V. P. Optical-electronic methods and tools for processing and analyzing biomedical images [monograph] / V. P. Kozhemʼyako, S. V. Pavlov, K. I. Stanchuk. – Vinnytsia: UNIVERSUM, 2006 – 203 p.

Pavlov S. V. Information Technology in Medical Diagnostics //Waldemar Wójcik, Andrzej Smolarz, July 11, 2017 by CRC Press - 210 Pages.

Wójcik W., Pavlov S., Kalimoldayev M. Information Technology in Medical Diagnostics II. London: (2019). Taylor & Francis Group, CRC Press, Balkema book. – 336 Pages.

Downloads

Abstract views: 0

Published

2026-01-12

How to Cite

[1]
A. Sokoltsov, “Full-life 3D models as an effective tool for practitioning skills of rhinoendoscopic interventions”, Опт-ел. інф-енерг. техн., vol. 50, no. 2, pp. 233–243, Jan. 2026.

Issue

Section

Biomedical Optical And Electronic Systems And Devices

Metrics

Downloads

Download data is not yet available.

Most read articles by the same author(s)